BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
array_kernel_array.h
Go to the documentation of this file.
1 /*
2  * Array_Kernel_Array.h
3  *
4  * Created on: Sep 7, 2019
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCATTENSOR_TENSORS_EXPRESSION_TEMPLATES_ARRAY_KERNEL_ARRAY_H_
9 #define BLACKCATTENSOR_TENSORS_EXPRESSION_TEMPLATES_ARRAY_KERNEL_ARRAY_H_
10 
12 
13 namespace bc {
14 namespace tensors {
15 namespace exprs {
16 
17 
18 /*
19  * Array is a class that inherits from Kernel_Array and the Allocator type.
20  * The Array class is used to initialize and destruct the Kernel_Array object.
21  *
22  * Array and Kernel_Array are two tightly coupled classes as
23  * expression-templates must be trivially copyable
24  * (to pass them to CUDA functions).
25  *
26  * Separating these two enables the usage of non-trivially copyable allocators
27  * as well as the ability to define
28  * non-default move and copy assignments/constructors.
29  *
30  * The Kernel_Array class should never be instantiated normally.
31  * It should only be accessed by instantiating an instance of the Array class,
32  * and calling 'my_array_object.expression_template()' to query it.
33  *
34  * Additionally this design pattern (replicated in Array_View)
35  * enables expression-templates to define additional members
36  * that we do not want to pass to the GPU.
37  * (As they my be non-essential to the computation).
38  *
39  */
40 template<class Shape, class ValueType, class SystemTag, class... Tags>
41 struct Kernel_Array:
42  Kernel_Array_Base<Kernel_Array<Shape, ValueType, SystemTag, Tags...>>,
43  Shape,
44  public Tags... {
45 
46  static constexpr int tensor_dim = Shape::tensor_dim;
47  static constexpr int tensor_iterator_dim =
48  bc::traits::sequence_contains_v<noncontinuous_memory_tag, Tags...> ?
49  tensor_dim : 1;
50 
51  using value_type = ValueType;
52  using system_tag = SystemTag;
53  using shape_type = Shape;
54 
55 private:
56 
57 using return_type = std::conditional_t<
58  bc::traits::sequence_contains_v<BC_Const_View, Tags...>,
59  const value_type,
60  value_type>;
61 
62 protected:
63 
64  value_type* m_data = nullptr;
65 
66 public:
67 
68  BCINLINE
70 
71  BCINLINE
72  Kernel_Array(shape_type shape, value_type* ptr):
73  shape_type(shape), m_data(ptr) {};
74 
75  template<
76  class AllocatorType,
77  class=std::enable_if_t<
78  bc::traits::true_v<
79  decltype(std::declval<AllocatorType>().allocate(0))>>>
80  Kernel_Array(shape_type shape, AllocatorType allocator):
81  shape_type(shape),
82  m_data(allocator.allocate(this->size())) {};
83 
84 public:
85 
86 
87  BCINLINE
88  value_type* data() const {
89  return m_data;
90  }
91 
92  BCINLINE
94  return static_cast<const shape_type&>(*this);
95  }
96 
97  BCINLINE
98  const return_type& operator [](bc::size_t index) const {
99  return m_data[this->coefficientwise_dims_to_index(index)];
100  }
101 
102  BCINLINE
103  return_type& operator [](bc::size_t index) {
104  return m_data[this->coefficientwise_dims_to_index(index)];
105  }
106 
107  template<class ... Integers> BCINLINE
108  const return_type& operator ()(Integers ... ints) const {
109  return m_data[this->dims_to_index(ints...)];
110  }
111 
112  template<class ... Integers> BCINLINE
113  return_type& operator ()(Integers ... ints) {
114  return m_data[this->dims_to_index(ints...)];
115  }
116 
117  template<class Allocator> BCHOT
118  void deallocate(Allocator allocator) {
119  allocator.deallocate(data(), this->size());
120  }
121 
122  //TODO remove
123  void deallocate() const {};
124 
125  template<class Allocator> BCHOT
126  void reset(Allocator allocator) {
127  deallocate(allocator);
128  static_cast<shape_type&>(*this) = shape_type();
129  }
130 };
131 
132 
133 template<int N, class Allocator, class... Tags>
134 auto make_kernel_array(Shape<N> shape, Allocator allocator, Tags...) {
137  using array_t = Kernel_Array<Shape<N>, value_type, system_tag, Tags...>;
138  return array_t(shape, allocator);
139 }
140 
141 
142 }
143 }
144 }
145 
146 
147 #endif /* BLACKCATTENSOR_TENSORS_EXPRESSION_TEMPLATES_ARRAY_KERNEL_ARRAY_H_ */
auto make_kernel_array(Shape< N > shape, Allocator allocator, Tags...)
Definition: array_kernel_array.h:134
#define BCINLINE
Definition: common.h:96
value_type * m_data
Definition: array_kernel_array.h:64
Definition: shape.h:17
size_t value_type
Definition: shape.h:26
BCINLINE Kernel_Array(shape_type shape, value_type *ptr)
Definition: array_kernel_array.h:72
static constexpr int tensor_iterator_dim
Definition: array_kernel_array.h:47
BCINLINE Kernel_Array()
Definition: array_kernel_array.h:69
ValueType value_type
Definition: array_kernel_array.h:51
BCINLINE size_t dims_to_index(Integers... ints) const
Definition: shape.h:102
static constexpr int tensor_dim
Definition: shape.h:24
Definition: array_kernel_array.h:41
BCHOT void deallocate(Allocator allocator)
Definition: array_kernel_array.h:118
Definition: expression_template_traits.h:49
BCINLINE shape_type get_shape() const
Definition: array_kernel_array.h:93
BCINLINE size_t size() const
Definition: shape.h:79
bc::traits::conditional_detected_t< bc::traits::query_system_tag, Allocator, host_tag > system_tag
Definition: allocator_traits.h:23
Shape shape_type
Definition: array_kernel_array.h:53
BCHOT void reset(Allocator allocator)
Definition: array_kernel_array.h:126
Kernel_Array(shape_type shape, AllocatorType allocator)
Definition: array_kernel_array.h:80
Definition: allocator_traits.h:20
int size_t
Definition: common.h:283
BCINLINE Shape()
Definition: shape.h:35
BCINLINE const return_type & operator[](bc::size_t index) const
Definition: array_kernel_array.h:98
Definition: allocators.h:20
void deallocate() const
Definition: array_kernel_array.h:123
BCINLINE const return_type & operator()(Integers ... ints) const
Definition: array_kernel_array.h:108
BCINLINE auto shape(Integers... ints)
Definition: shape.h:264
static constexpr int tensor_dim
Definition: array_kernel_array.h:46
#define BCHOT
Definition: common.h:97
BCINLINE size_t coefficientwise_dims_to_index(size_t index) const
Definition: shape.h:93
Definition: expression_template_traits.h:62
BCINLINE value_type * data() const
Definition: array_kernel_array.h:88
Definition: expression_template_base.h:107
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22
bc::allocator_traits< Allocator >::system_tag system_tag
Definition: array_kernel_array.h:52