BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
array_slice.h
Go to the documentation of this file.
1 /*
2  * Array_Slice.h
3  *
4  * Created on: Dec 24, 2018
5  * Author: joseph
6  */
7 
8 #ifndef BC_EXPRESSION_TEMPLATES_ARRAY_SLICE_H_
9 #define BC_EXPRESSION_TEMPLATES_ARRAY_SLICE_H_
10 
12 #include "array_kernel_array.h"
13 #include "array.h"
14 
15 namespace bc {
16 namespace tensors {
17 namespace exprs {
18 
19 template<class Shape, class ValueType, class Allocator, class... Tags>
20 struct Array_Slice:
21  Kernel_Array<
22  Shape,
23  ValueType,
24  typename bc::allocator_traits<Allocator>::system_tag,
25  Tags...>
26 {
28  using value_type = ValueType;
29  using allocator_type = Allocator;
31  using shape_type = Shape;
32 
33 private:
34 
35  using parent = Kernel_Array<Shape, ValueType, system_tag, Tags...>;
36 
37  stream_type m_stream;
38  allocator_type m_allocator;
39 
40 public:
41 
42  using move_assignable = std::false_type;
43  using copy_assignable = bc::traits::not_type<bc::traits::sequence_contains_v<BC_Const_View, Tags...>>;
44 
45  template<class... Args> BCHOT
46  Array_Slice(stream_type stream, allocator_type allocator, Args... args):
47  parent(args...),
48  m_stream(stream),
49  m_allocator(allocator) {}
50 
51  const allocator_type& get_allocator() const { return m_allocator; }
52  allocator_type& get_allocator() { return m_allocator; }
53 
54  const stream_type& get_stream() const { return m_stream; }
55  stream_type& get_stream() { return m_stream; }
56 };
57 
58 namespace {
59 
60 template<class Shape, class Parent, class... Tags>
61 using slice_type_factory = Array_Slice<
62  Shape,
63  typename Parent::value_type,
64  typename Parent::allocator_type,
65  std::conditional_t<
66  std::is_const<Parent>::value ||
69  BC_View>,
70  Tags...>;
71 
72 template<int Dimension, class Parent, class... Tags>
73 using slice_type_from_parent = slice_type_factory<
75  Parent,
76  Tags...>;
77 
78 template<int Dimension, class Parent, class... Tags>
79 using strided_slice_type_from_parent = slice_type_factory<
80  std::enable_if_t<Dimension==1, Strided_Vector_Shape>,
81  Parent,
82  Tags...>;
83 }
84 
85 template<class Parent>
86 auto make_row(Parent& parent, bc::size_t index) {
87  using slice_type = strided_slice_type_from_parent<
88  1, Parent, noncontinuous_memory_tag>;
89 
90  return slice_type(
91  parent.get_stream(),
92  parent.get_allocator(),
93  Strided_Vector_Shape(parent.cols(), parent.leading_dim(1)),
94  parent.data() + index);
95 }
96 
97 template<class Parent>
98 auto make_diagnol(Parent& parent, bc::size_t diagnol_index) {
99  bc::size_t stride = parent.leading_dim(1) + 1;
100  bc::size_t length = bc::traits::min(
101  parent.rows(), parent.cols() - diagnol_index);
102 
103  bc::size_t ptr_index = diagnol_index > 0
104  ? parent.leading_dim(1) * diagnol_index
105  : std::abs(diagnol_index);
106 
107  using slice_type = strided_slice_type_from_parent<
108  1, Parent, noncontinuous_memory_tag>;
109 
110  return slice_type(
111  parent.get_stream(),
112  parent.get_allocator(),
113  Strided_Vector_Shape(length, stride),
114  parent.data() + ptr_index);
115 }
116 
117 template<
118  class Parent,
119  class=std::enable_if_t<
121 static auto make_slice(Parent& parent, bc::size_t index)
122 {
123  using scalar_type = slice_type_from_parent<0, Parent>;
124  using slice_type = slice_type_from_parent<
125  bc::traits::max(0,Parent::tensor_dim-1),
126  Parent,
128 
129  using slice_t = std::conditional_t<
130  Parent::tensor_dim == 1, scalar_type, slice_type>;
131 
132  return slice_t(
133  parent.get_stream(),
134  parent.get_allocator(),
135  parent.get_shape(),
136  parent.data() + parent.leading_dim() * index);
137 }
138 
139 template<
140  class Parent,
141  class=std::enable_if_t<
143  int differentiator=0>
144 static auto make_slice(Parent& parent, bc::size_t index)
145 {
146  using scalar_type = slice_type_from_parent<0, Parent>;
147  using slice_type = slice_type_from_parent<
148  bc::traits::max(0,Parent::tensor_dim-1), Parent>;
149 
150  using slice_t = std::conditional_t<
151  Parent::tensor_dim == 1, scalar_type, slice_type>;
152 
153  return slice_t(
154  parent.get_stream(),
155  parent.get_allocator(),
156  parent.get_shape(),
157  parent.data() + parent.leading_dim() * index);
158 }
159 
160 template<class Parent>
161 static auto make_ranged_slice(Parent& parent, bc::size_t from, bc::size_t to)
162 {
163  using slice_type = slice_type_from_parent<Parent::tensor_dim, Parent>;
164  bc::size_t range = to - from;
165  bc::size_t index = parent.leading_dim() * from;
166  static_assert(Parent::tensor_dim > 0);
167  bc::Dim<Parent::tensor_dim> shape = parent.inner_shape();
168  shape[Parent::tensor_dim-1] = range;
169 
170  return slice_type(
171  parent.get_stream(),
172  parent.get_allocator(),
174  parent.data() + index);
175 }
176 
177 template<class Parent, class ShapeLike>
178 static auto make_view(Parent& parent, ShapeLike shape) {
179  using slice_type = slice_type_from_parent<ShapeLike::tensor_dim, Parent>;
180 
181  return slice_type(
182  parent.get_stream(),
183  parent.get_allocator(),
185  parent.data());
186 }
187 
188 template<class Parent>
189 static auto make_scalar(Parent& parent, bc::size_t index) {
190  using slice_type = slice_type_from_parent<0, Parent>;
191 
192  return slice_type(
193  parent.get_stream(),
194  parent.get_allocator(),
195  bc::Shape<0>(),
196  parent.data() + index);
197 }
198 
199 template<
200  class Parent,
201  class ShapeLike,
202  class = std::enable_if_t<Parent::tensor_dim != 1>>
204  Parent& parent,
205  bc::Dim<Parent::tensor_dim> index_points,
206  ShapeLike shape)
207 {
208  using slice_type = slice_type_from_parent<
209  ShapeLike::tensor_dim, Parent, noncontinuous_memory_tag>;
210 
211  return slice_type(
212  parent.get_stream(),
213  parent.get_allocator(),
214  Shape<ShapeLike::tensor_dim>(shape, parent.get_shape()),
215  parent.data() + parent.dims_to_index(index_points));
216 }
217 
218 template<
219  class Parent,
220  class ShapeLike,
221  class = std::enable_if_t<Parent::tensor_dim == 1>>
223  Parent& parent,
224  bc::Dim<1> index_points,
225  ShapeLike shape)
226 {
227  return make_ranged_slice(
228  parent,
229  index_points[0],
230  index_points[0] + shape[0]);
231 }
232 
233 
234 
235 } //ns BC
236 } //ns exprs
237 } //ns tensors
238 
239 
240 
241 #endif /* Array_Slice_H_ */
stream_type & get_stream()
Definition: array_slice.h:55
bc::traits::not_type< bc::traits::sequence_contains_v< BC_Const_View, Tags... > > copy_assignable
Definition: array_slice.h:43
Definition: shape.h:17
const allocator_type & get_allocator() const
Definition: array_slice.h:51
BCINLINE size_t dims_to_index(Integers... ints) const
Definition: shape.h:102
Definition: array_kernel_array.h:41
auto make_diagnol(Parent &parent, bc::size_t diagnol_index)
Definition: array_slice.h:98
allocator_type & get_allocator()
Definition: array_slice.h:52
Definition: expression_template_traits.h:49
Definition: shape.h:212
auto make_chunk(Parent &parent, bc::Dim< Parent::tensor_dim > index_points, ShapeLike shape)
Definition: array_slice.h:203
bc::traits::conditional_detected_t< bc::traits::query_system_tag, Allocator, host_tag > system_tag
Definition: allocator_traits.h:23
typename bc::allocator_traits< Allocator >::system_tag system_tag
Definition: array_slice.h:27
Definition: dim.h:17
struct bc::oper::cmath_functions::Abs abs
auto make_row(Parent &parent, bc::size_t index)
Definition: array_slice.h:86
Array_Slice(stream_type stream, allocator_type allocator, Args... args)
Definition: array_slice.h:46
conditional_t< cond, false_type, true_type > not_type
Definition: type_traits.h:52
std::false_type move_assignable
Definition: array_slice.h:42
ValueType value_type
Definition: array_slice.h:28
int size_t
Definition: common.h:283
Definition: expression_template_traits.h:76
BCINLINE Shape()
Definition: shape.h:35
Definition: allocators.h:20
Definition: array.h:21
auto range(T begin, T end=T())
Definition: io.h:46
const stream_type & get_stream() const
Definition: array_slice.h:54
BCINLINE auto shape(Integers... ints)
Definition: shape.h:264
#define BCHOT
Definition: common.h:97
Definition: expression_template_traits.h:62
Definition: device.h:27
Definition: shape.h:117
Definition: expression_template_traits.h:54
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22