16 return static_cast<unsigned>(a) < static_cast<unsigned>(b);
19 template <
typename Dtype>
22 const Dtype* data_im,
const int channels,
23 const int height,
const int width,
24 const int kernel_h,
const int kernel_w,
26 const int pad_h,
const int pad_w,
27 const int stride_h,
const int stride_w,
29 const int dilation_h,
const int dilation_w,
32 int image_h_end = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1));
33 int image_w_end = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1));
35 const int output_h = image_h_end / stride_h + 1;
36 const int output_w = image_w_end / stride_w + 1;
40 using column_tensor_type = Kernel_Array<bc::Shape<5>, Dtype,
bc::host_tag>;
41 using image_tensor_type = Kernel_Array<bc::Shape<3>, Dtype, bc::host_tag>;
43 auto column_tensor = column_tensor_type(
44 {kernel_h, kernel_w, channels, output_w, output_h},
47 auto image_tensor = image_tensor_type(
48 {height, width, channels},
49 const_cast<Dtype*
>(data_im));
52 for (
int channel = 0; channel < channels; channel++) {
53 for (
int image_col = 0; image_col < width-kernel_w+1; image_col++) {
54 for (
int image_row = 0; image_row < height-kernel_w+1; image_row++) {
55 for (
int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
56 for (
int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
57 column_tensor(image_col, image_row, channel, kernel_col, kernel_row)
58 = image_tensor(channel, image_col+kernel_col, image_row+kernel_row);
66 template <
typename Dtype>
69 const Dtype* data_im,
const int channels,
70 const int height,
const int width,
71 const int kernel_h,
const int kernel_w,
73 const int pad_h,
const int pad_w,
74 const int stride_h,
const int stride_w,
76 const int dilation_h,
const int dilation_w,
79 int image_h_end = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1));
80 int image_w_end = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1));
82 const int output_h = image_h_end / stride_h + 1;
83 const int output_w = image_w_end / stride_w + 1;
87 using column_tensor_type = Kernel_Array<bc::Shape<5>, Dtype,
bc::host_tag>;
88 using image_tensor_type = Kernel_Array<bc::Shape<3>, Dtype, bc::host_tag>;
90 auto column_tensor = column_tensor_type(
91 {kernel_h, kernel_w, channels, output_w, output_h},
94 auto image_tensor = image_tensor_type(
95 {height, width, channels},
96 const_cast<Dtype*
>(data_im));
99 for (
int channel = 0; channel < channels; channel++) {
100 for (
int image_col = 0; image_col < width-kernel_w+1; image_col++) {
101 for (
int image_row = 0; image_row < height-kernel_w+1; image_row++) {
102 for (
int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
103 for (
int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
104 image_tensor(channel, image_col+kernel_col, image_row+kernel_row)
105 += column_tensor(image_col, image_row, channel, kernel_col, kernel_row);
void im2col(bc::host_tag, const Dtype *data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, Dtype *data_col)
Definition: im2col.h:20
Definition: array_kernel_array.h:41
void col2im(bc::host_tag, const Dtype *data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, Dtype *data_col)
Definition: im2col.h:67
bool is_a_ge_zero_and_a_lt_b(int a, int b)
Definition: im2col.h:15
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22