BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
im2col.h
Go to the documentation of this file.
1 /*
2  * bc_im2col.h
3  *
4  * Created on: Jan 9, 2020
5  * Author: joseph
6  */
7 
8 #ifndef BC_IM2COL_H_
9 #define BC_IM2COL_H_
10 
11 namespace bc {
12 namespace nn {
13 namespace functions {
14 
15 inline bool is_a_ge_zero_and_a_lt_b(int a, int b) {
16  return static_cast<unsigned>(a) < static_cast<unsigned>(b);
17 }
18 
19 template <typename Dtype>
20 void im2col(
22  const Dtype* data_im, const int channels,
23  const int height, const int width,
24  const int kernel_h, const int kernel_w,
25 
26  const int pad_h, const int pad_w,
27  const int stride_h, const int stride_w,
28 
29  const int dilation_h, const int dilation_w,
30  Dtype* data_col) {
31 
32  int image_h_end = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1));
33  int image_w_end = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1));
34 
35  const int output_h = image_h_end / stride_h + 1;
36  const int output_w = image_w_end / stride_w + 1;
37 
39 
40  using column_tensor_type = Kernel_Array<bc::Shape<5>, Dtype, bc::host_tag>;
41  using image_tensor_type = Kernel_Array<bc::Shape<3>, Dtype, bc::host_tag>;
42 
43  auto column_tensor = column_tensor_type(
44  {kernel_h, kernel_w, channels, output_w, output_h},
45  data_col);
46 
47  auto image_tensor = image_tensor_type(
48  {height, width, channels},
49  const_cast<Dtype*>(data_im));
50 
51  //TODO add support for strides, and padding
52  for (int channel = 0; channel < channels; channel++) {
53  for (int image_col = 0; image_col < width-kernel_w+1; image_col++) {
54  for (int image_row = 0; image_row < height-kernel_w+1; image_row++) {
55  for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
56  for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
57  column_tensor(image_col, image_row, channel, kernel_col, kernel_row)
58  = image_tensor(channel, image_col+kernel_col, image_row+kernel_row);
59  }
60  }
61  }
62  }
63  }
64 }
65 
66 template <typename Dtype>
67 void col2im(
69  const Dtype* data_im, const int channels,
70  const int height, const int width,
71  const int kernel_h, const int kernel_w,
72 
73  const int pad_h, const int pad_w,
74  const int stride_h, const int stride_w,
75 
76  const int dilation_h, const int dilation_w,
77  Dtype* data_col) {
78 
79  int image_h_end = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1));
80  int image_w_end = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1));
81 
82  const int output_h = image_h_end / stride_h + 1;
83  const int output_w = image_w_end / stride_w + 1;
84 
86 
87  using column_tensor_type = Kernel_Array<bc::Shape<5>, Dtype, bc::host_tag>;
88  using image_tensor_type = Kernel_Array<bc::Shape<3>, Dtype, bc::host_tag>;
89 
90  auto column_tensor = column_tensor_type(
91  {kernel_h, kernel_w, channels, output_w, output_h},
92  data_col);
93 
94  auto image_tensor = image_tensor_type(
95  {height, width, channels},
96  const_cast<Dtype*>(data_im));
97 
98  //TODO add support for strides, and padding
99  for (int channel = 0; channel < channels; channel++) {
100  for (int image_col = 0; image_col < width-kernel_w+1; image_col++) {
101  for (int image_row = 0; image_row < height-kernel_w+1; image_row++) {
102  for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
103  for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
104  image_tensor(channel, image_col+kernel_col, image_row+kernel_row)
105  += column_tensor(image_col, image_row, channel, kernel_col, kernel_row);
106  }
107  }
108  }
109  }
110  }
111 }
112 
113 
114 }
115 }
116 }
117 
118 
119 
120 #endif /* BC_IM2COL_H_ */
void im2col(bc::host_tag, const Dtype *data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, Dtype *data_col)
Definition: im2col.h:20
Definition: array_kernel_array.h:41
void col2im(bc::host_tag, const Dtype *data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, Dtype *data_col)
Definition: im2col.h:67
Definition: common.h:26
bool is_a_ge_zero_and_a_lt_b(int a, int b)
Definition: im2col.h:15
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22