11 #include "../layer_loader.h" 15 #include <sys/types.h> 23 template<
class OutputTensorDescriptor>
26 template<
class OutputTensorDescriptor>
54 template<
class InputTensorDescriptor>
57 using input_value_type =
typename InputTensorDescriptor::value_type;
58 using input_system_tag =
typename InputTensorDescriptor::system_tag;
59 using input_allocator_type =
typename InputTensorDescriptor::allocator_type;
60 using input_tensor_dim =
typename InputTensorDescriptor::tensor_dim;
62 using input_tensor_type =
typename InputTensorDescriptor::type;
63 using batched_input_tensor_type =
typename InputTensorDescriptor::batched_type;
84 class InputTensorDescriptor,
85 class OutputTensorDescriptor=InputTensorDescriptor>
90 using value_type =
typename InputTensorDescriptor::value_type;
91 using system_tag =
typename InputTensorDescriptor::system_tag;
93 using input_tensor_dim =
typename InputTensorDescriptor::tensor_dim;
96 using input_tensor_type =
typename InputTensorDescriptor::type;
97 using batched_input_tensor_type =
typename InputTensorDescriptor::batched_type;
112 value_type m_learning_rate = default_learning_rate;
114 std::string m_classname;
127 std::string classname,
130 m_classname(parse_classname(classname)),
131 m_input_shape(input_shape),
132 m_output_shape(output_shape) {
136 m_classname(parse_classname(classname)),
137 m_input_shape(input_shape) {}
156 m_batch_sz = batch_size;
157 set_batch_size_hook(batch_size);
164 m_learning_rate = learning_rate;
165 set_learning_rate_hook(learning_rate);
185 const std::string&
classname()
const {
return m_classname; }
188 using query_optimizer_type =
typename T::optimizer_type;
193 std::string yaml = classname() +
':' 194 +
"\n\tinput_shape: " + get_input_shape().to_string();
199 if (!std::is_same<optimizer_type, bc::traits::None>::value) {
201 yaml +=
"\n\toptimizer: ";
202 yaml += parse_classname(opt_name);
205 std::string other_features = get_string_architecture_hook();
206 if (other_features !=
"")
207 yaml +=
"\n\t" + other_features;
216 auto classname_ns =
std::find(classname.rbegin(), classname.rend(),
':');
217 classname.erase(classname.rend().base(), classname_ns.base());
223 return input_tensor_type(get_input_shape()).zero();
235 return batched_input_tensor_type(
236 get_batched_input_shape()).zero();
243 get_batched_output_shape()).zero();
virtual shape_type get_input_shape() const
Definition: layer_base.h:142
typename Tensor_Descriptor< ValueType, SystemTag, Integer< 3 > > ::tensor_dim output_tensor_dim
Definition: layer_base.h:32
const next_layer_type & next_layer() const
Definition: layer_base.h:49
auto get_learning_rate() const
Definition: layer_base.h:170
virtual std::string get_string_architecture_hook() const
Definition: layer_base.h:212
const char * bc_get_classname_of(const T &arg)
Definition: common.h:330
auto default_output_tensor_factory() const
Definition: layer_base.h:227
typename Tensor_Descriptor< ValueType, SystemTag, Integer< 3 > > ::type output_tensor_type
Definition: layer_base.h:34
std::string get_string_architecture() const
Definition: layer_base.h:192
next_layer_type & next_layer()
Definition: layer_base.h:50
static std::string parse_classname(std::string classname)
Definition: layer_base.h:215
void set_batch_size(int batch_size)
Definition: layer_base.h:154
void set_next(next_layer_type &next)
Definition: layer_base.h:47
Definition: layer_base.h:86
A Dictionary designed to store any type using the 'store' and 'load' functions.
Definition: layer_cache.h:46
typename Tensor_Descriptor< ValueType, SystemTag, Integer< 3 > > ::allocator_type output_allocator_type
Definition: layer_base.h:31
Definition: layer_loader.h:19
bc::size_t batched_output_size() const
Definition: layer_base.h:152
bc::size_t batched_input_size() const
Definition: layer_base.h:151
typename Tensor_Descriptor< ValueType, SystemTag, Integer< 3 > > ::system_tag output_system_tag
Definition: layer_base.h:30
bc::size_t input_size() const
Definition: layer_base.h:147
output_shape_type output_shape() const
Definition: layer_base.h:48
Definition: layer_traits.h:42
virtual void load_to_cache(Layer_Loader &, const Cache &)
Definition: layer_base.h:176
Layer_Base(std::string classname, shape_type input_shape, output_shape_type output_shape)
m_classname should be initialized by supplying __func__ to the first argument of the Layer_Base...
Definition: layer_base.h:126
virtual ~Layer_Output_Base()
Definition: layer_base.h:51
class::::::Args static auto find(bc::streams::Stream< bc::host_tag > stream, Begin begin, End end, Args... args)
Definition: algorithms.h:124
auto get_batched_input_shape() const
Definition: layer_base.h:144
auto get_batched_output_shape() const
Definition: layer_base.h:145
auto default_batched_input_tensor_factory() const
Definition: layer_base.h:233
next_layer_type * m_next_layer
Definition: layer_base.h:42
typename Tensor_Descriptor< ValueType, SystemTag, Integer< 3 > > ::value_type output_value_type
Definition: layer_base.h:29
bc::size_t output_size() const
Definition: layer_base.h:148
int size_t
Definition: common.h:283
Definition: type_traits.h:187
typename InputDescriptor ::system_tag system_tag
Definition: layer_base.h:91
void update_weights()
Definition: layer_base.h:179
typename conditional_detected< func, TestType, DefaultType >::type conditional_detected_t
Definition: type_traits.h:87
virtual ~Layer_Base()
Definition: layer_base.h:139
const std::string & classname() const
Returns the derived_classes class namepse.
Definition: layer_base.h:185
typename InputDescriptor ::allocator_type allocator_type
Definition: layer_base.h:92
virtual void save_from_cache(Layer_Loader &, const Cache &) const
Definition: layer_base.h:174
auto default_batched_output_tensor_factory() const
Definition: layer_base.h:240
bc::size_t batch_size() const
Definition: layer_base.h:149
void copy_training_data_to_single_predict(Cache &, int batch_index)
Definition: layer_base.h:178
Definition: layer_base.h:27
output_shape_type m_output_shape
Definition: layer_base.h:118
auto get_batched_learning_rate() const
Definition: layer_base.h:171
void set_learning_rate(value_type learning_rate)
Definition: layer_base.h:162
virtual void set_learning_rate_hook(value_type learning_rate)
Definition: layer_base.h:168
shape_type m_input_shape
Definition: layer_base.h:117
virtual void load(Layer_Loader &)
Definition: layer_base.h:175
void clear_bp_storage(Cache &)
Definition: layer_base.h:180
virtual output_shape_type get_output_shape() const
Definition: layer_base.h:141
Layer_Base(std::string classname, shape_type input_shape)
Definition: layer_base.h:135
virtual void save(Layer_Loader &) const
Definition: layer_base.h:173
auto default_input_tensor_factory() const
Definition: layer_base.h:221
BCINLINE auto concat(Ints... value) const
Definition: dim.h:105
bc::Dim< output_tensor_dim::value > m_output_shape
Definition: layer_base.h:43
typename Tensor_Descriptor< ValueType, SystemTag, Integer< 3 > > ::batched_type batched_output_tensor_type
Definition: layer_base.h:35
virtual void set_batch_size_hook(int batch_size)
Definition: layer_base.h:160
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22
typename InputDescriptor ::value_type value_type
Definition: layer_base.h:90
BCINLINE value_type prod(size_t start, size_t end) const
Definition: dim.h:244