BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
host.h
Go to the documentation of this file.
1 /*
2  * Host.h
3  *
4  * Created on: Dec 3, 2018
5  * Author: joseph
6  */
7 
8 #ifndef BC_RANDOM_HOST_H_
9 #define BC_RANDOM_HOST_H_
10 
11 #include <random>
12 
13 namespace bc {
14 
15 struct host_tag;
16 
17 namespace random {
18 
19 template<class SystemTag>
20 struct Random;
21 
22 template<>
23 struct Random<host_tag> {
24  template<class Tensor, class value_type>
25  static void randomize_kernel(
26  Tensor& tensor,
27  value_type lower_bound,
28  value_type upper_bound)
29  {
31  for (int i = 0; i < tensor.size(); ++i) {
32  tensor[i] =
33  ((value_type(std::rand()) / ((value_type) RAND_MAX + 1))
34  * (upper_bound - lower_bound)) + lower_bound;
35  }
37  }
38 
39  template<class Stream, class Tensor, class value_type>
40  static void randomize(
41  Stream stream,
42  Tensor& tensor,
43  value_type lower_bound,
44  value_type upper_bound)
45  {
46  stream.enqueue([&](){
47  randomize_kernel(tensor, lower_bound, upper_bound);
48  });
49  }
50 };
51 
52 
53 }
54 }
55 
56 
57 
58 #endif /* HOST_H_ */
BCINLINE size_t size() const
Definition: shape.h:79
#define BC_omp_for__
Definition: common.h:269
static void randomize(Stream stream, Tensor &tensor, value_type lower_bound, value_type upper_bound)
Definition: host.h:40
Definition: common.h:26
Definition: device.h:27
static void randomize_kernel(Tensor &tensor, value_type lower_bound, value_type upper_bound)
Definition: host.h:25
#define BC_omp_bar__
Definition: common.h:270
Definition: host.h:20
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22