BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
tensor_iteralgos.h
Go to the documentation of this file.
1  self_type& fill(value_type value)
2  {
4  this->get_stream(),
5  this->cw_begin(),
6  this->cw_end(),
7  value);
8 
9  return *this;
10  }
11 
12  self_type& zero() { return fill(0); }
13  self_type& ones() { return fill(1); }
14 
15  template<class Function>
16  void for_each(Function func) const {
17  *this = this->un_expr(func);
18  }
19 
20  template<class Function>
21  void for_each(Function func) {
22  *this = this->un_expr(func);
23  }
24 
25  self_type& sort()
26  {
28  this->get_stream(),
29  this->cw_begin(),
30  this->cw_end());
31 
32  return *this;
33  }
34 
35  void randomize(value_type lb=0, value_type ub=1)
36  {
37  static_assert(
38  expression_type::tensor_iterator_dim == 0 ||
39  expression_type::tensor_iterator_dim == 1,
40  "randomize not available to non-continuous tensors");
41 
42  using Random = bc::random::Random<system_tag>;
44  this->get_stream(),
45  this->expression_template(), lb, ub);
46  }
self_type & zero()
Definition: tensor_iteralgos.h:12
void for_each(Function func) const
Definition: tensor_iteralgos.h:16
class::::::Args static auto fill(bc::streams::Stream< bc::host_tag > stream, Begin begin, End end, Args... args)
Definition: algorithms.h:131
class::::::Args static auto sort(bc::streams::Stream< bc::host_tag > stream, Begin begin, End end, Args... args)
Definition: algorithms.h:147
self_type & sort()
Definition: tensor_iteralgos.h:25
void randomize(value_type lb=0, value_type ub=1)
Definition: tensor_iteralgos.h:35
self_type & fill(value_type value)
Definition: tensor_iteralgos.h:1
auto un_expr(functor f) const
Definition: expression_operations.h:103
self_type & ones()
Definition: tensor_iteralgos.h:13
Definition: host.h:20