BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
device.h
Go to the documentation of this file.
1 /*
2  * Device.h
3  *
4  * Created on: Dec 12, 2018
5  * Author: joseph
6  */
7 #ifdef __CUDACC__
8 #ifndef BC_UTILITY_DEVICE_H_
9 #define BC_UTILITY_DEVICE_H_
10 
11 #include <memory>
12 #include <vector>
13 #include <mutex>
14 
15 
16 namespace bc {
17 namespace utility {
18 
19 template<class SystemTag>
20 struct Utility;
21 
22 template<>
24 
25  template<class T>
26  static void HostToDevice(T* t, const T* u, bc::size_t size = 1) {
27  cudaMemcpy(t, u, sizeof(T) * size, cudaMemcpyHostToDevice);
28  }
29 
30  template<class T>
31  static void DeviceToHost(T* t, const T* u, bc::size_t size = 1) {
32  cudaMemcpy(t, u, sizeof(T) * size, cudaMemcpyDeviceToHost);
33  }
34 };
35 
36 
37 }
38 }
39 
40 
41 
42 
43 #endif /* DEVICE_H_ */
44 #endif
static void DeviceToHost(T *t, const T *u, bc::size_t size=1)
Definition: device.h:31
const auto t() const
Definition: expression_operations.h:93
static void HostToDevice(T *t, const T *u, bc::size_t size=1)
Definition: device.h:26
Definition: common.h:32
Definition: device.h:20
int size_t
Definition: common.h:283
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22