8 #ifndef BLACKCATTENSORS_NEURALNETWORKS_LAYERS_CONVOLUTION_H_ 9 #define BLACKCATTENSORS_NEURALNETWORKS_LAYERS_CONVOLUTION_H_ 19 class Optimizer=Stochastic_Gradient_Descent>
22 Convolution<SystemTag, ValueType, Optimizer>,
23 Tensor_Descriptor<ValueType, SystemTag, bc::traits::Integer<3>>> {
48 using mat_opt_t =
typename Optimizer::template Optimizer<mat>;
60 Dim<2> m_column_image_shape;
73 w(krnl_dims.
prod(2)*img_dims[2], krnl_dims[2]),
74 w_gradients(w.get_shape()),
76 m_krnl_shape(krnl_dims),
81 auto out_dim = [&](
int dim_idx) {
83 m_padding[dim_idx]*2 -
84 m_krnl_shape[dim_idx]) /
85 m_strides[dim_idx] + 1;
90 m_krnl_shape.
prod(2) * img_dims[2],
91 out_dim(0) * out_dim(1));
104 for (
int i = 0; i < this->
batch_size(); ++i) {
106 col_x[i].expression_template(),
107 x[i].expression_template(),
114 y[i].reshaped(mat_y_shape) = col_x[i].
t() * w;
125 mat col_x(m_column_image_shape);
137 y.reshaped(mat_y_shape) = col_x.
t() * w;
143 template<
class X,
class Delta>
149 mat mat_delta_dx(m_column_image_shape);
151 for (
int i = 0; i < this->
batch_size(); ++i) {
152 auto mat_dy = dy[i].reshaped(w.
cols(), dy.rows() * dy.cols());
153 w_gradients -= col_x[i] * mat_dy.
t();
154 mat_delta_dx = w * mat_dy;
172 m_krnl_shape[0], m_krnl_shape[1],
179 w_opt.update(w, w_gradients);
192 w_opt.save(loader,
"w_opt");
198 w_opt.load(loader,
"w_opt");
218 Optimizer=Optimizer())
220 using value_type =
typename SystemTag::default_floating_point_type;
237 SystemTag system_tag,
243 Optimizer=Optimizer())
245 using value_type =
typename SystemTag::default_floating_point_type;
262 SystemTag system_tag,
270 using value_type =
typename SystemTag::default_floating_point_type;
287 SystemTag system_tag,
295 using value_type =
typename SystemTag::default_floating_point_type;
void randomize(value_type lb=0, value_type ub=1)
Definition: tensor_base.h:36
BCINLINE size_t rows() const
Definition: shape.h:80
void im2col(Stream stream, ColumnImage col_image, Image image, bc::Dim< 3 > krnl_shape, bc::Dim< 2 > padding=bc::Dim< 2 >().fill(0), bc::Dim< 2 > strides=bc::Dim< 2 >().fill(1), bc::Dim< 2 > dilation=bc::Dim< 2 >().fill(1), int numb_spatial_axis=2)
Definition: functions.h:115
auto & get_weights()
Definition: convolution.h:202
Optimizer optimizer_type
Definition: convolution.h:28
self_type & zero()
Definition: tensor_base.h:13
void col2im(Stream stream, ColumnImage col_image, Image image, bc::Dim< 3 > krnl_shape, bc::Dim< 2 > padding=bc::Dim< 2 >(), bc::Dim< 2 > strides=bc::Dim< 2 >().fill(1), bc::Dim< 2 > dilation=bc::Dim< 2 >().fill(1))
Definition: functions.h:150
ValueType value_type
Definition: convolution.h:26
Definition: constexpr_int.h:14
SystemTag system_tag
Definition: convolution.h:25
Definition: layer_base.h:86
#define BLACKCAT_DEFAULT_SYSTEM_T
Definition: common.h:49
A Dictionary designed to store any type using the 'store' and 'load' functions.
Definition: layer_cache.h:46
Definition: layer_loader.h:19
void save_variable(const T &tensor, string variable_name)
Definition: layer_loader.h:44
Definition: layer_cache.h:33
BCINLINE auto dim(const Integers &... ints)
Definition: dim.h:336
auto & get_weights() const
Definition: convolution.h:201
std::true_type greedy_evaluate_delta
Definition: convolution.h:37
std::true_type requires_extra_cache
Definition: convolution.h:38
void set_learning_rate(value_type lr)
Definition: convolution.h:183
auto single_predict(const X &x, Cache &cache)
Definition: convolution.h:122
Dim< 3 > get_batched_column_image_shape() const
Definition: convolution.h:166
virtual void load(Layer_Loader &loader) override
Definition: convolution.h:195
auto get_batched_input_shape() const
Definition: layer_base.h:144
auto get_batched_output_shape() const
Definition: layer_base.h:145
Definition: convolution.h:20
Convolution(Dim< 3 > img_dims, Dim< 3 > krnl_dims, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1))
Definition: convolution.h:66
auto convolution(SystemTag system_tag, Dim< 3 > img_dims, Dim< 3 > krnl_dims, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1), Optimizer=Optimizer())
Definition: convolution.h:211
const auto t() const
Definition: expression_base.h:94
virtual void save(Layer_Loader &loader) const override
Definition: convolution.h:189
auto & store(key_type< K, V, cache_key_type::inherit > key, U &&expression)
Definition: layer_cache.h:104
void load_variable(T &tensor, string variable_name)
Definition: layer_loader.h:50
bc::size_t batch_size() const
Definition: layer_base.h:149
auto & load(key_type< K, V, cache_key_type::inherit > key, int t_modifier=0) const
Definition: layer_cache.h:80
output_shape_type m_output_shape
Definition: layer_base.h:118
Definition: momentum.h:16
auto forward_propagation(const X &x, Cache &cache)
Definition: convolution.h:98
BCINLINE const Derived & expression_template() const
Definition: expression_template_base.h:22
auto get_batched_learning_rate() const
Definition: layer_base.h:171
self_type & fill(value_type value)
Definition: tensor_iteralgos.h:1
std::true_type defines_single_predict
Definition: convolution.h:40
auto recurrent_convolution(SystemTag system_tag, Dim< 3 > img_dims, Dim< 3 > krnl_dims, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1), Optimizer=Optimizer())
Definition: convolution.h:236
void set_learning_rate(value_type learning_rate)
Definition: layer_base.h:162
auto prod(const Expression_Base< Expression > &tensor)
Definition: tensor_static_functions.h:35
shape_type m_input_shape
Definition: layer_base.h:117
BCINLINE size_t cols() const
Definition: shape.h:81
auto back_propagation(const X &x, const Delta &dy, Cache &cache)
Definition: convolution.h:144
virtual output_shape_type get_output_shape() const
Definition: layer_base.h:141
BCINLINE auto concat(Ints... value) const
Definition: dim.h:105
Dim< 4 > get_kernel_shape() const
Definition: convolution.h:170
void update_weights()
Definition: convolution.h:177
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22
Definition: recycle_allocator.h:57
BCINLINE value_type prod(size_t start, size_t end) const
Definition: dim.h:244