BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
convolution.h
Go to the documentation of this file.
1 /*
2  * Convolution.h
3  *
4  * Created on: Aug 27, 2019
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCATTENSORS_NEURALNETWORKS_LAYERS_CONVOLUTION_H_
9 #define BLACKCATTENSORS_NEURALNETWORKS_LAYERS_CONVOLUTION_H_
10 
11 #include "layer_base.h"
12 
13 namespace bc {
14 namespace nn {
15 
16 template<
17  class SystemTag,
18  class ValueType,
19  class Optimizer=Stochastic_Gradient_Descent>
20 struct Convolution:
21  public Layer_Base<
22  Convolution<SystemTag, ValueType, Optimizer>,
23  Tensor_Descriptor<ValueType, SystemTag, bc::traits::Integer<3>>> {
24 
25  using system_tag = SystemTag;
26  using value_type = ValueType;
28  using optimizer_type = Optimizer;
29 
33 
36 
37  using greedy_evaluate_delta = std::true_type;
38  using requires_extra_cache = std::true_type;
39 
40  using defines_single_predict = std::true_type;
41 
42 private:
43 
47 
48  using mat_opt_t = typename Optimizer::template Optimizer<mat>;
49 
50  allocator_type m_allocator;
51 
52  mat w; //dims=[kernel_size, numb_kernels]
53  mat w_gradients;
54  mat_opt_t w_opt;
55 
56  Dim<3> m_krnl_shape; //dims=[rows, cols, numb_kernels]
57  Dim<2> m_padding;
58  Dim<2> m_strides;
59  Dim<2> m_dilation;
60  Dim<2> m_column_image_shape;
61 
63 
64 public:
65 
67  Dim<3> img_dims,
68  Dim<3> krnl_dims,
69  Dim<2> padding=Dim<2>().fill(0),
70  Dim<2> strides=Dim<2>().fill(1),
71  Dim<2> dilation=Dim<2>().fill(1)):
72  parent_type(__func__, img_dims),
73  w(krnl_dims.prod(2)*img_dims[2], krnl_dims[2]),
74  w_gradients(w.get_shape()),
75  w_opt(w.get_shape()),
76  m_krnl_shape(krnl_dims),
77  m_padding(padding),
78  m_strides(strides),
79  m_dilation(dilation)
80  {
81  auto out_dim = [&](int dim_idx) {
82  return (this->m_input_shape[dim_idx] +
83  m_padding[dim_idx]*2 -
84  m_krnl_shape[dim_idx]) /
85  m_strides[dim_idx] + 1;
86  };
87 
88  this->m_output_shape = bc::dim(out_dim(0), out_dim(1), krnl_dims[2]);
89  m_column_image_shape = bc::dim(
90  m_krnl_shape.prod(2) * img_dims[2],
91  out_dim(0) * out_dim(1));
92 
93  w.randomize(-1, 1);
94  }
95 
96 
97  template<class X>
98  auto forward_propagation(const X& x, Cache& cache)
99  {
101  cube col_x(get_batched_column_image_shape());
102  col_x.zero();
103 
104  for (int i = 0; i < this->batch_size(); ++i) {
105  bc::im2col(x.get_stream(),
106  col_x[i].expression_template(),
107  x[i].expression_template(),
108  m_krnl_shape,
109  m_padding,
110  m_strides,
111  m_dilation);
112 
113  bc::Dim<2> mat_y_shape = {y.rows() * y.cols(), w.cols() };
114  y[i].reshaped(mat_y_shape) = col_x[i].t() * w;
115  }
116 
117  cache.store(col_image_key(), col_x);
118  return y;
119  }
120 
121  template<class X>
122  auto single_predict(const X& x, Cache& cache)
123  {
124  cube y(this->get_output_shape());
125  mat col_x(m_column_image_shape);
126  col_x.zero();
127 
128  bc::im2col(x.get_stream(),
129  col_x.expression_template(),
131  m_krnl_shape,
132  m_padding,
133  m_strides,
134  m_dilation);
135 
136  bc::Dim<2> mat_y_shape = {y.rows() * y.cols(), w.cols() };
137  y.reshaped(mat_y_shape) = col_x.t() * w;
138 
139  return y;
140  }
141 
142 
143  template<class X, class Delta>
144  auto back_propagation(const X& x, const Delta& dy, Cache& cache)
145  {
146  cube& col_x = cache.load(col_image_key());
147  tensor4 delta_dx(this->get_batched_input_shape());
148  delta_dx.zero();
149  mat mat_delta_dx(m_column_image_shape);
150 
151  for (int i = 0; i < this->batch_size(); ++i) {
152  auto mat_dy = dy[i].reshaped(w.cols(), dy.rows() * dy.cols());
153  w_gradients -= col_x[i] * mat_dy.t();
154  mat_delta_dx = w * mat_dy;
155  bc::col2im(x.get_stream(),
156  mat_delta_dx.expression_template(),
157  delta_dx[i].expression_template(),
158  m_krnl_shape,
159  m_padding,
160  m_strides,
161  m_dilation);
162  }
163  return delta_dx;
164  }
165 
167  return m_column_image_shape.concat(this->batch_size());
168  }
169 
171  return bc::Dim<4> {
172  m_krnl_shape[0], m_krnl_shape[1],
173  this->m_input_shape[2], m_krnl_shape[2]
174  };
175  }
176 
178  {
179  w_opt.update(w, w_gradients);
180  w_gradients.zero();
181  }
182 
184  {
186  w_opt.set_learning_rate(this->get_batched_learning_rate());
187  }
188 
189  virtual void save(Layer_Loader& loader) const override
190  {
191  loader.save_variable(w, "w");
192  w_opt.save(loader, "w_opt");
193  }
194 
195  virtual void load(Layer_Loader& loader) override
196  {
197  loader.load_variable(w, "w");
198  w_opt.load(loader, "w_opt");
199  }
200 
201  auto& get_weights() const { return w; }
202  auto& get_weights() { return w; }
203 
204 
205 };
206 
207 
208 template<
209  class SystemTag=BLACKCAT_DEFAULT_SYSTEM_T,
210  class Optimizer=nn_default_optimizer_type>
212  SystemTag system_tag,
213  Dim<3> img_dims,
214  Dim<3> krnl_dims,
215  Dim<2> padding=Dim<2>().fill(0),
216  Dim<2> strides=Dim<2>().fill(1),
217  Dim<2> dilation=Dim<2>().fill(1),
218  Optimizer=Optimizer())
219 {
220  using value_type = typename SystemTag::default_floating_point_type;
221  return Convolution<
222  SystemTag,
223  value_type,
224  Optimizer>(
225  img_dims,
226  krnl_dims,
227  padding,
228  strides,
229  dilation);
230 }
231 
232 
233 template<
234  class SystemTag=BLACKCAT_DEFAULT_SYSTEM_T,
235  class Optimizer=nn_default_optimizer_type>
237  SystemTag system_tag,
238  Dim<3> img_dims,
239  Dim<3> krnl_dims,
240  Dim<2> padding=Dim<2>().fill(0),
241  Dim<2> strides=Dim<2>().fill(1),
242  Dim<2> dilation=Dim<2>().fill(1),
243  Optimizer=Optimizer())
244 {
245  using value_type = typename SystemTag::default_floating_point_type;
246  return Convolution<
247  SystemTag,
248  value_type,
249  Optimizer>(
250  img_dims,
251  krnl_dims,
252  padding,
253  strides,
254  dilation);
255 }
256 
257 
258 template<
259  class SystemTag,
260  class Optimizer>
262  SystemTag system_tag,
263  Dim<3> img_dims,
264  Dim<3> krnl_dims,
265  Optimizer,
266  Dim<2> padding=Dim<2>().fill(0),
267  Dim<2> strides=Dim<2>().fill(1),
268  Dim<2> dilation=Dim<2>().fill(1))
269 {
270  using value_type = typename SystemTag::default_floating_point_type;
271  return Convolution<
272  SystemTag,
273  value_type,
274  Optimizer>(
275  img_dims,
276  krnl_dims,
277  padding,
278  strides,
279  dilation);
280 }
281 
282 
283 template<
284  class SystemTag,
285  class Optimizer>
287  SystemTag system_tag,
288  Dim<3> img_dims,
289  Dim<3> krnl_dims,
290  Optimizer,
291  Dim<2> padding=Dim<2>().fill(0),
292  Dim<2> strides=Dim<2>().fill(1),
293  Dim<2> dilation=Dim<2>().fill(1))
294 {
295  using value_type = typename SystemTag::default_floating_point_type;
296  return Convolution<
297  SystemTag,
298  value_type,
299  Optimizer>(
300  img_dims,
301  krnl_dims,
302  padding,
303  strides,
304  dilation);
305 }
306 
307 
308 }
309 }
310 
311 
312 
313 #endif /* CONVOLUTION_H_ */
void randomize(value_type lb=0, value_type ub=1)
Definition: tensor_base.h:36
BCINLINE size_t rows() const
Definition: shape.h:80
void im2col(Stream stream, ColumnImage col_image, Image image, bc::Dim< 3 > krnl_shape, bc::Dim< 2 > padding=bc::Dim< 2 >().fill(0), bc::Dim< 2 > strides=bc::Dim< 2 >().fill(1), bc::Dim< 2 > dilation=bc::Dim< 2 >().fill(1), int numb_spatial_axis=2)
Definition: functions.h:115
auto & get_weights()
Definition: convolution.h:202
Optimizer optimizer_type
Definition: convolution.h:28
self_type & zero()
Definition: tensor_base.h:13
void col2im(Stream stream, ColumnImage col_image, Image image, bc::Dim< 3 > krnl_shape, bc::Dim< 2 > padding=bc::Dim< 2 >(), bc::Dim< 2 > strides=bc::Dim< 2 >().fill(1), bc::Dim< 2 > dilation=bc::Dim< 2 >().fill(1))
Definition: functions.h:150
ValueType value_type
Definition: convolution.h:26
Definition: constexpr_int.h:14
SystemTag system_tag
Definition: convolution.h:25
Definition: layer_base.h:86
#define BLACKCAT_DEFAULT_SYSTEM_T
Definition: common.h:49
A Dictionary designed to store any type using the &#39;store&#39; and &#39;load&#39; functions.
Definition: layer_cache.h:46
Definition: layer_loader.h:19
void save_variable(const T &tensor, string variable_name)
Definition: layer_loader.h:44
Definition: layer_cache.h:33
BCINLINE auto dim(const Integers &... ints)
Definition: dim.h:336
auto & get_weights() const
Definition: convolution.h:201
std::true_type greedy_evaluate_delta
Definition: convolution.h:37
std::true_type requires_extra_cache
Definition: convolution.h:38
void set_learning_rate(value_type lr)
Definition: convolution.h:183
auto single_predict(const X &x, Cache &cache)
Definition: convolution.h:122
Dim< 3 > get_batched_column_image_shape() const
Definition: convolution.h:166
virtual void load(Layer_Loader &loader) override
Definition: convolution.h:195
Definition: convolution.h:20
Convolution(Dim< 3 > img_dims, Dim< 3 > krnl_dims, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1))
Definition: convolution.h:66
auto convolution(SystemTag system_tag, Dim< 3 > img_dims, Dim< 3 > krnl_dims, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1), Optimizer=Optimizer())
Definition: convolution.h:211
const auto t() const
Definition: expression_base.h:94
virtual void save(Layer_Loader &loader) const override
Definition: convolution.h:189
auto & store(key_type< K, V, cache_key_type::inherit > key, U &&expression)
Definition: layer_cache.h:104
void load_variable(T &tensor, string variable_name)
Definition: layer_loader.h:50
auto & load(key_type< K, V, cache_key_type::inherit > key, int t_modifier=0) const
Definition: layer_cache.h:80
Definition: momentum.h:16
auto forward_propagation(const X &x, Cache &cache)
Definition: convolution.h:98
BCINLINE const Derived & expression_template() const
Definition: expression_template_base.h:22
self_type & fill(value_type value)
Definition: tensor_iteralgos.h:1
std::true_type defines_single_predict
Definition: convolution.h:40
auto recurrent_convolution(SystemTag system_tag, Dim< 3 > img_dims, Dim< 3 > krnl_dims, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1), Optimizer=Optimizer())
Definition: convolution.h:236
void set_learning_rate(value_type learning_rate)
Definition: layer_base.h:162
auto prod(const Expression_Base< Expression > &tensor)
Definition: tensor_static_functions.h:35
BCINLINE size_t cols() const
Definition: shape.h:81
auto back_propagation(const X &x, const Delta &dy, Cache &cache)
Definition: convolution.h:144
BCINLINE auto concat(Ints... value) const
Definition: dim.h:105
Dim< 4 > get_kernel_shape() const
Definition: convolution.h:170
void update_weights()
Definition: convolution.h:177
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22
Definition: recycle_allocator.h:57
BCINLINE value_type prod(size_t start, size_t end) const
Definition: dim.h:244