BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
Namespaces | Classes | Typedefs | Enumerations | Functions | Variables
bc::nn Namespace Reference

Namespaces

 detail
 
 functions
 

Classes

struct  Adam
 
struct  Cache
 A Dictionary designed to store any type using the 'store' and 'load' functions. More...
 
struct  cache_key
 
struct  Convolution
 
struct  FeedForward
 
struct  Flatten
 
struct  Function
 
struct  Layer_Base
 
class  Layer_Input_Base
 
struct  Layer_Loader
 
struct  Layer_Manager
 
struct  Layer_Output_Base
 
struct  layer_traits
 
struct  LayerChain
 Layer_Chain is an iterator-like object that connects different types of neural-network layers and defines convenient iterator-like methods. More...
 
struct  LayerChain< Index, Derived, CurrentLayer, Layers... >
 
struct  Logging_Output_Layer
 
struct  LSTM
 
struct  Max_Pooling
 
struct  Mean_Absolute_Error
 
struct  Mean_Absolute_Percent_Error
 
struct  Mean_Squared_Error
 
struct  Momentum
 
struct  network_runtime_traits
 
struct  NeuralNetwork
 the Neural_Network More...
 
struct  Optimizer_Base
 
struct  Output_Layer
 
struct  Polymorphic_Layer_Base
 
struct  Recurrent
 
struct  Root_Mean_Squared_Error
 
struct  SoftMax
 
struct  Stochastic_Gradient_Descent
 
struct  tensor_descriptor
 
struct  Tensor_Descriptor
 

Typedefs

template<class ValueType , class SystemTag , class... AltAllocator>
using nn_default_allocator_type = bc::allocators::Recycle_Allocator< ValueType, SystemTag, AltAllocator... >
 
using nn_default_system_tag = bc::host_tag
 
using nn_default_optimizer_type = Momentum
 
template<class SystemTag , class ValueType >
using layer_default_allocator = bc::allocators::Polymorphic_Allocator< SystemTag, ValueType >
 

Enumerations

enum  cache_key_type { inherit, always_recurrent, always_forward }
 A type designed to act as a key to the Cache object. More...
 

Functions

template<class SystemTag = BLACKCAT_DEFAULT_SYSTEM_T, class Optimizer = nn_default_optimizer_type>
auto convolution (SystemTag system_tag, Dim< 3 > img_dims, Dim< 3 > krnl_dims, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1), Optimizer=Optimizer())
 
template<class SystemTag = BLACKCAT_DEFAULT_SYSTEM_T, class Optimizer = nn_default_optimizer_type>
auto recurrent_convolution (SystemTag system_tag, Dim< 3 > img_dims, Dim< 3 > krnl_dims, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1), Optimizer=Optimizer())
 
template<class SystemTag , class Optimizer >
auto convolution (SystemTag system_tag, Dim< 3 > img_dims, Dim< 3 > krnl_dims, Optimizer, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1))
 
template<class SystemTag , class Optimizer >
auto recurrent_convolution (SystemTag system_tag, Dim< 3 > img_dims, Dim< 3 > krnl_dims, Optimizer, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(1), Dim< 2 > dilation=Dim< 2 >().fill(1))
 
template<class SystemTag , class Optimizer = nn_default_optimizer_type>
auto feedforward (SystemTag system_tag, int inputs, int outputs, Optimizer=Optimizer())
 
template<class Optimizer = nn_default_optimizer_type>
auto feedforward (int inputs, int outputs, Optimizer=Optimizer())
 
template<class ValueType , class SystemTag , int X>
auto flatten (SystemTag system_tag, Dim< X > shape)
 
template<class SystemTag , int X>
auto flatten (SystemTag system_tag, Dim< X > shape)
 
template<int X>
auto flatten (Dim< X > shape)
 
template<class ValueType , class SystemTag , class ErrorFunction = Mean_Absolute_Error>
Logging_Output_Layer< SystemTag, ValueType > logging_output_layer (SystemTag system_tag, bc::size_t inputs, ErrorFunction error_function=ErrorFunction(), std::ostream &os=std::cout)
 
template<class SystemTag , class ErrorFunction = Mean_Absolute_Error>
auto logging_output_layer (SystemTag system_tag, bc::size_t inputs, ErrorFunction error_function=ErrorFunction(), std::ostream &os=std::cout)
 
template<class ErrorFunction = Mean_Absolute_Error>
auto logging_output_layer (int inputs, ErrorFunction error_function=ErrorFunction(), std::ostream &os=std::cout)
 
template<class SystemTag , class Optimizer = nn_default_optimizer_type>
auto lstm (SystemTag system_tag, int inputs, int outputs, Optimizer=Optimizer())
 
template<class Optimizer = nn_default_optimizer_type>
auto lstm (int inputs, int outputs, Optimizer=Optimizer())
 
template<class ValueType , class SystemTag >
Max_Pooling< SystemTag, ValueType > max_pooling (SystemTag system_tag, Dim< 3 > img_dims, Dim< 2 > krnl_dims={3, 3}, Dim< 2 > padding={0, 0}, Dim< 2 > strides={-1,-1})
 
template<class SystemTag >
auto max_pooling (SystemTag system_tag, Dim< 3 > img_dims, Dim< 2 > krnl_dims={3, 3}, Dim< 2 > padding={0, 0}, Dim< 2 > strides={-1,-1})
 
auto max_pooling (Dim< 3 > img_dims, Dim< 2 > krnl_dims={3, 3}, Dim< 2 > padding={0, 0}, Dim< 2 > strides={-1,-1})
 
auto tanh (bc::size_t inputs)
 
template<class ValueType , class SystemTag >
auto tanh (SystemTag system, bc::size_t inputs)
 
template<class SystemTag >
auto tanh (SystemTag system, bc::size_t inputs)
 
template<class ValueType , class SystemTag , int X>
auto tanh (SystemTag system, bc::Dim< X > inputs)
 
template<class SystemTag , int X>
auto tanh (SystemTag system, bc::Dim< X > inputs)
 
auto logistic (bc::size_t inputs)
 
template<class ValueType , class SystemTag >
auto logistic (SystemTag system, bc::size_t inputs)
 
template<class SystemTag >
auto logistic (SystemTag system, bc::size_t inputs)
 
template<class ValueType , class SystemTag , int X>
auto logistic (SystemTag system, bc::Dim< X > inputs)
 
template<class SystemTag , int X>
auto logistic (SystemTag system, bc::Dim< X > inputs)
 
auto relu (bc::size_t inputs)
 
template<class ValueType , class SystemTag >
auto relu (SystemTag system, bc::size_t inputs)
 
template<class SystemTag >
auto relu (SystemTag system, bc::size_t inputs)
 
template<class ValueType , class SystemTag , int X>
auto relu (SystemTag system, bc::Dim< X > inputs)
 
template<class SystemTag , int X>
auto relu (SystemTag system, bc::Dim< X > inputs)
 
auto softplus (bc::size_t inputs)
 
template<class ValueType , class SystemTag >
auto softplus (SystemTag system, bc::size_t inputs)
 
template<class SystemTag >
auto softplus (SystemTag system, bc::size_t inputs)
 
template<class ValueType , class SystemTag , int X>
auto softplus (SystemTag system, bc::Dim< X > inputs)
 
template<class SystemTag , int X>
auto softplus (SystemTag system, bc::Dim< X > inputs)
 
auto mish (bc::size_t inputs)
 
template<class ValueType , class SystemTag >
auto mish (SystemTag system, bc::size_t inputs)
 
template<class SystemTag >
auto mish (SystemTag system, bc::size_t inputs)
 
template<class ValueType , class SystemTag , int X>
auto mish (SystemTag system, bc::Dim< X > inputs)
 
template<class SystemTag , int X>
auto mish (SystemTag system, bc::Dim< X > inputs)
 
template<class ValueType , class SystemTag >
Output_Layer< SystemTag, ValueType > output_layer (SystemTag system_tag, int inputs)
 
template<class SystemTag >
auto output_layer (SystemTag system_tag, int inputs)
 
auto output_layer (int inputs)
 
template<class... ArgsA, class... ArgsB>
void link (std::shared_ptr< Layer_Base< ArgsA... >> prev, std::shared_ptr< Layer_Base< ArgsB... >> next)
 
template<class ValueType , class SystemTag >
Recurrent< SystemTag, ValueType > recurrent (SystemTag system_tag, int inputs, int outputs)
 
template<class SystemTag >
auto recurrent (SystemTag system_tag, int inputs, int outputs)
 
auto recurrent (int inputs, int outputs)
 
template<class ValueType , class SystemTag >
SoftMax< SystemTag, ValueType > softmax (SystemTag system_tag, int inputs)
 
template<class SystemTag >
auto softmax (SystemTag system_tag, int inputs)
 
auto softmax (int inputs)
 
template<class ValueType , class SystemTag , class Functor >
Function< SystemTag, ValueType, Functor > function (SystemTag system_tag, int inputs, Functor function=Functor())
 
template<class SystemTag , class Functor >
auto function (SystemTag system_tag, int inputs, Functor function=Functor())
 
template<class ValueType , class SystemTag , class Functor , int X>
Function< SystemTag, ValueType, Functor > function (SystemTag system_tag, Dim< X > shape, Functor function=Functor())
 
template<class SystemTag , class Functor , int X>
auto function (SystemTag system_tag, bc::Dim< X > shape, Functor function=Functor())
 
template<class ... Layers>
auto neuralnetwork (Layers ... layers)
 Factory method for creating neural_networks. More...
 

Variables

struct bc::nn::Mean_Absolute_Error MAE
 
struct bc::nn::Root_Mean_Squared_Error RMSE
 
struct bc::nn::Mean_Squared_Error MSE
 
struct bc::nn::Mean_Absolute_Percent_Error MAPE
 
struct bc::nn::Adam adam
 
struct bc::nn::Momentum momentum
 
struct bc::nn::Stochastic_Gradient_Descent sgd
 

Typedef Documentation

◆ layer_default_allocator

template<class SystemTag , class ValueType >
using bc::nn::layer_default_allocator = typedef bc::allocators::Polymorphic_Allocator<SystemTag, ValueType>

◆ nn_default_allocator_type

template<class ValueType , class SystemTag , class... AltAllocator>
using bc::nn::nn_default_allocator_type = typedef bc::allocators::Recycle_Allocator<ValueType, SystemTag, AltAllocator...>

◆ nn_default_optimizer_type

◆ nn_default_system_tag

Enumeration Type Documentation

◆ cache_key_type

A type designed to act as a key to the Cache object.

Arguments: K - any class to use as a key, generally "Name<char...>" class is used to create a constexpr name to the class. V - the type to return from the given key CacheKeyOverrider - Determines if the storing should override the most recent member store or if it should be stored in a separate location for back-propagation through time.

Enumerator
inherit 
always_recurrent 
always_forward 

Function Documentation

◆ convolution() [1/2]

template<class SystemTag = BLACKCAT_DEFAULT_SYSTEM_T, class Optimizer = nn_default_optimizer_type>
auto bc::nn::convolution ( SystemTag  system_tag,
Dim< 3 >  img_dims,
Dim< 3 >  krnl_dims,
Dim< 2 >  padding = Dim<2>().fill(0),
Dim< 2 >  strides = Dim<2>().fill(1),
Dim< 2 >  dilation = Dim<2>().fill(1),
Optimizer  = Optimizer() 
)

◆ convolution() [2/2]

template<class SystemTag , class Optimizer >
auto bc::nn::convolution ( SystemTag  system_tag,
Dim< 3 >  img_dims,
Dim< 3 >  krnl_dims,
Optimizer  ,
Dim< 2 >  padding = Dim<2>().fill(0),
Dim< 2 >  strides = Dim<2>().fill(1),
Dim< 2 >  dilation = Dim<2>().fill(1) 
)

◆ feedforward() [1/2]

template<class SystemTag , class Optimizer = nn_default_optimizer_type>
auto bc::nn::feedforward ( SystemTag  system_tag,
int  inputs,
int  outputs,
Optimizer  = Optimizer() 
)

◆ feedforward() [2/2]

template<class Optimizer = nn_default_optimizer_type>
auto bc::nn::feedforward ( int  inputs,
int  outputs,
Optimizer  = Optimizer() 
)

◆ flatten() [1/3]

template<class ValueType , class SystemTag , int X>
auto bc::nn::flatten ( SystemTag  system_tag,
Dim< X >  shape 
)

◆ flatten() [2/3]

template<class SystemTag , int X>
auto bc::nn::flatten ( SystemTag  system_tag,
Dim< X >  shape 
)

◆ flatten() [3/3]

template<int X>
auto bc::nn::flatten ( Dim< X >  shape)

◆ function() [1/4]

template<class ValueType , class SystemTag , class Functor >
Function<SystemTag, ValueType, Functor> bc::nn::function ( SystemTag  system_tag,
int  inputs,
Functor  function = Functor() 
)

◆ function() [2/4]

template<class SystemTag , class Functor >
auto bc::nn::function ( SystemTag  system_tag,
int  inputs,
Functor  function = Functor() 
)

◆ function() [3/4]

template<class ValueType , class SystemTag , class Functor , int X>
Function<SystemTag, ValueType, Functor> bc::nn::function ( SystemTag  system_tag,
Dim< X >  shape,
Functor  function = Functor() 
)

◆ function() [4/4]

template<class SystemTag , class Functor , int X>
auto bc::nn::function ( SystemTag  system_tag,
bc::Dim< X >  shape,
Functor  function = Functor() 
)

◆ link()

template<class... ArgsA, class... ArgsB>
void bc::nn::link ( std::shared_ptr< Layer_Base< ArgsA... >>  prev,
std::shared_ptr< Layer_Base< ArgsB... >>  next 
)

◆ logging_output_layer() [1/3]

template<class ValueType , class SystemTag , class ErrorFunction = Mean_Absolute_Error>
Logging_Output_Layer<SystemTag, ValueType> bc::nn::logging_output_layer ( SystemTag  system_tag,
bc::size_t  inputs,
ErrorFunction  error_function = ErrorFunction(),
std::ostream &  os = std::cout 
)

◆ logging_output_layer() [2/3]

template<class SystemTag , class ErrorFunction = Mean_Absolute_Error>
auto bc::nn::logging_output_layer ( SystemTag  system_tag,
bc::size_t  inputs,
ErrorFunction  error_function = ErrorFunction(),
std::ostream &  os = std::cout 
)

◆ logging_output_layer() [3/3]

template<class ErrorFunction = Mean_Absolute_Error>
auto bc::nn::logging_output_layer ( int  inputs,
ErrorFunction  error_function = ErrorFunction(),
std::ostream &  os = std::cout 
)

◆ logistic() [1/5]

auto bc::nn::logistic ( bc::size_t  inputs)

◆ logistic() [2/5]

template<class ValueType , class SystemTag >
auto bc::nn::logistic ( SystemTag  system,
bc::size_t  inputs 
)

◆ logistic() [3/5]

template<class SystemTag >
auto bc::nn::logistic ( SystemTag  system,
bc::size_t  inputs 
)

◆ logistic() [4/5]

template<class ValueType , class SystemTag , int X>
auto bc::nn::logistic ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ logistic() [5/5]

template<class SystemTag , int X>
auto bc::nn::logistic ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ lstm() [1/2]

template<class SystemTag , class Optimizer = nn_default_optimizer_type>
auto bc::nn::lstm ( SystemTag  system_tag,
int  inputs,
int  outputs,
Optimizer  = Optimizer() 
)

◆ lstm() [2/2]

template<class Optimizer = nn_default_optimizer_type>
auto bc::nn::lstm ( int  inputs,
int  outputs,
Optimizer  = Optimizer() 
)

◆ max_pooling() [1/3]

template<class ValueType , class SystemTag >
Max_Pooling<SystemTag, ValueType> bc::nn::max_pooling ( SystemTag  system_tag,
Dim< 3 >  img_dims,
Dim< 2 >  krnl_dims = {3,3},
Dim< 2 >  padding = {0,0},
Dim< 2 >  strides = {-1,-1} 
)

◆ max_pooling() [2/3]

template<class SystemTag >
auto bc::nn::max_pooling ( SystemTag  system_tag,
Dim< 3 >  img_dims,
Dim< 2 >  krnl_dims = {3,3},
Dim< 2 >  padding = {0,0},
Dim< 2 >  strides = {-1,-1} 
)

◆ max_pooling() [3/3]

auto bc::nn::max_pooling ( Dim< 3 >  img_dims,
Dim< 2 >  krnl_dims = {3,3},
Dim< 2 >  padding = {0,0},
Dim< 2 >  strides = {-1,-1} 
)

◆ mish() [1/5]

auto bc::nn::mish ( bc::size_t  inputs)

◆ mish() [2/5]

template<class ValueType , class SystemTag >
auto bc::nn::mish ( SystemTag  system,
bc::size_t  inputs 
)

◆ mish() [3/5]

template<class SystemTag >
auto bc::nn::mish ( SystemTag  system,
bc::size_t  inputs 
)

◆ mish() [4/5]

template<class ValueType , class SystemTag , int X>
auto bc::nn::mish ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ mish() [5/5]

template<class SystemTag , int X>
auto bc::nn::mish ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ neuralnetwork()

template<class ... Layers>
auto bc::nn::neuralnetwork ( Layers ...  layers)

Factory method for creating neural_networks.

Each layer defines its own respective factory_methods. It is generally recommended to use these factory methods opposed to instantiating a layer object manually.

◆ output_layer() [1/3]

template<class ValueType , class SystemTag >
Output_Layer<SystemTag, ValueType> bc::nn::output_layer ( SystemTag  system_tag,
int  inputs 
)

◆ output_layer() [2/3]

template<class SystemTag >
auto bc::nn::output_layer ( SystemTag  system_tag,
int  inputs 
)

◆ output_layer() [3/3]

auto bc::nn::output_layer ( int  inputs)

◆ recurrent() [1/3]

template<class ValueType , class SystemTag >
Recurrent<SystemTag, ValueType> bc::nn::recurrent ( SystemTag  system_tag,
int  inputs,
int  outputs 
)

◆ recurrent() [2/3]

template<class SystemTag >
auto bc::nn::recurrent ( SystemTag  system_tag,
int  inputs,
int  outputs 
)

◆ recurrent() [3/3]

auto bc::nn::recurrent ( int  inputs,
int  outputs 
)

◆ recurrent_convolution() [1/2]

template<class SystemTag = BLACKCAT_DEFAULT_SYSTEM_T, class Optimizer = nn_default_optimizer_type>
auto bc::nn::recurrent_convolution ( SystemTag  system_tag,
Dim< 3 >  img_dims,
Dim< 3 >  krnl_dims,
Dim< 2 >  padding = Dim<2>().fill(0),
Dim< 2 >  strides = Dim<2>().fill(1),
Dim< 2 >  dilation = Dim<2>().fill(1),
Optimizer  = Optimizer() 
)

◆ recurrent_convolution() [2/2]

template<class SystemTag , class Optimizer >
auto bc::nn::recurrent_convolution ( SystemTag  system_tag,
Dim< 3 >  img_dims,
Dim< 3 >  krnl_dims,
Optimizer  ,
Dim< 2 >  padding = Dim<2>().fill(0),
Dim< 2 >  strides = Dim<2>().fill(1),
Dim< 2 >  dilation = Dim<2>().fill(1) 
)

◆ relu() [1/5]

template<class SystemTag , int X>
auto bc::nn::relu ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ relu() [2/5]

template<class ValueType , class SystemTag , int X>
auto bc::nn::relu ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ relu() [3/5]

template<class SystemTag >
auto bc::nn::relu ( SystemTag  system,
bc::size_t  inputs 
)

◆ relu() [4/5]

template<class ValueType , class SystemTag >
auto bc::nn::relu ( SystemTag  system,
bc::size_t  inputs 
)

◆ relu() [5/5]

auto bc::nn::relu ( bc::size_t  inputs)

◆ softmax() [1/3]

template<class ValueType , class SystemTag >
SoftMax<SystemTag, ValueType> bc::nn::softmax ( SystemTag  system_tag,
int  inputs 
)

◆ softmax() [2/3]

template<class SystemTag >
auto bc::nn::softmax ( SystemTag  system_tag,
int  inputs 
)

◆ softmax() [3/3]

auto bc::nn::softmax ( int  inputs)

◆ softplus() [1/5]

template<class SystemTag >
auto bc::nn::softplus ( SystemTag  system,
bc::size_t  inputs 
)

◆ softplus() [2/5]

template<class ValueType , class SystemTag >
auto bc::nn::softplus ( SystemTag  system,
bc::size_t  inputs 
)

◆ softplus() [3/5]

template<class ValueType , class SystemTag , int X>
auto bc::nn::softplus ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ softplus() [4/5]

auto bc::nn::softplus ( bc::size_t  inputs)

◆ softplus() [5/5]

template<class SystemTag , int X>
auto bc::nn::softplus ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ tanh() [1/5]

template<class ValueType , class SystemTag , int X>
auto bc::nn::tanh ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ tanh() [2/5]

template<class SystemTag , int X>
auto bc::nn::tanh ( SystemTag  system,
bc::Dim< X >  inputs 
)

◆ tanh() [3/5]

template<class ValueType , class SystemTag >
auto bc::nn::tanh ( SystemTag  system,
bc::size_t  inputs 
)

◆ tanh() [4/5]

auto bc::nn::tanh ( bc::size_t  inputs)

◆ tanh() [5/5]

template<class SystemTag >
auto bc::nn::tanh ( SystemTag  system,
bc::size_t  inputs 
)

Variable Documentation

◆ adam

struct bc::nn::Adam bc::nn::adam

◆ MAE

struct bc::nn::Mean_Absolute_Error bc::nn::MAE

◆ MAPE

◆ momentum

struct bc::nn::Momentum bc::nn::momentum

◆ MSE

struct bc::nn::Mean_Squared_Error bc::nn::MSE

◆ RMSE

struct bc::nn::Root_Mean_Squared_Error bc::nn::RMSE

◆ sgd