8 #ifndef BLACKCATTENSORS_NEURALNETWORKS_LAYERS_FLATTEN_H_ 9 #define BLACKCATTENSORS_NEURALNETWORKS_LAYERS_FLATTEN_H_ 20 class InputDescriptor=Tensor_Descriptor<ValueType, SystemTag, InputTensorDimension>,
21 class OutputDescriptor=Tensor_Descriptor<ValueType, SystemTag, Integer<1>>>
24 Flatten<SystemTag, ValueType, InputTensorDimension>,
45 template<
class Matrix>
50 template<
class Vector>
55 template<
class X,
class Delta>
62 template<
class ValueType,
class SystemTag,
int X>
68 template<
class SystemTag,
int X>
72 typename SystemTag::default_floating_point_type,
79 typename BLACKCAT_DEFAULT_SYSTEM_T::default_floating_point_type,
InputTensorDimension input_tensor_dim
Definition: flatten.h:36
SystemTag system_tag
Definition: flatten.h:28
auto back_propagation(const X &x, const Delta &dy)
Definition: flatten.h:56
Definition: constexpr_int.h:14
Definition: layer_base.h:86
#define BLACKCAT_DEFAULT_SYSTEM_T
Definition: common.h:49
auto flatten(SystemTag system_tag, Dim< X > shape)
Definition: flatten.h:63
std::true_type greedy_evaluate_delta
Definition: flatten.h:35
auto forward_propagation(const Matrix &x)
Definition: flatten.h:46
auto get_batched_input_shape() const
Definition: layer_base.h:144
auto get_batched_output_shape() const
Definition: layer_base.h:145
BCINLINE value_type size() const
Definition: dim.h:28
ValueType value_type
Definition: flatten.h:29
Flatten(bc::Dim< input_tensor_dim::value > input_shape)
Definition: flatten.h:42
std::true_type defines_single_predict
Definition: flatten.h:38
BCINLINE auto shape(Integers... ints)
Definition: shape.h:264
auto single_predict(const Vector &x)
Definition: flatten.h:51
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22
Definition: recycle_allocator.h:57