BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
flatten.h
Go to the documentation of this file.
1 /*
2  * Flatten.cu
3  *
4  * Created on: Jan 28, 2018
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCATTENSORS_NEURALNETWORKS_LAYERS_FLATTEN_H_
9 #define BLACKCATTENSORS_NEURALNETWORKS_LAYERS_FLATTEN_H_
10 
11 #include "layer_base.h"
12 
13 namespace bc {
14 namespace nn {
15 
16 template<
17  class SystemTag,
18  class ValueType,
19  class InputTensorDimension=bc::traits::Integer<3>,
20  class InputDescriptor=Tensor_Descriptor<ValueType, SystemTag, InputTensorDimension>,
21  class OutputDescriptor=Tensor_Descriptor<ValueType, SystemTag, Integer<1>>>
22 struct Flatten:
23  Layer_Base<
24  Flatten<SystemTag, ValueType, InputTensorDimension>,
25  InputDescriptor,
26  OutputDescriptor>
27 {
28  using system_tag = SystemTag;
29  using value_type = ValueType;
30 
34 
35  using greedy_evaluate_delta = std::true_type;
36  using input_tensor_dim = InputTensorDimension;
38  using defines_single_predict = std::true_type;
39 
40 public:
41 
43  parent_type(__func__, input_shape, {input_shape.size()}) {}
44 
45  template<class Matrix>
46  auto forward_propagation(const Matrix& x) {
47  return x.reshaped(this->get_batched_output_shape());
48  }
49 
50  template<class Vector>
51  auto single_predict(const Vector& x) {
52  return x.flattened();
53  }
54 
55  template<class X, class Delta>
56  auto back_propagation(const X& x, const Delta& dy) {
57  return dy.reshaped(this->get_batched_input_shape());
58  }
59 };
60 
61 #ifndef BC_CLING_JIT
62 template<class ValueType, class SystemTag, int X>
63 auto flatten(SystemTag system_tag, Dim<X> shape) {
65 }
66 #endif
67 
68 template<class SystemTag, int X>
69 auto flatten(SystemTag system_tag, Dim<X> shape) {
70  return Flatten<
71  SystemTag,
72  typename SystemTag::default_floating_point_type,
74 }
75 
76 template<int X>
79  typename BLACKCAT_DEFAULT_SYSTEM_T::default_floating_point_type,
81 }
82 
83 
84 }
85 }
86 
87 #endif /* FEEDFORWARD_CU_ */
InputTensorDimension input_tensor_dim
Definition: flatten.h:36
SystemTag system_tag
Definition: flatten.h:28
Definition: flatten.h:22
auto back_propagation(const X &x, const Delta &dy)
Definition: flatten.h:56
Definition: constexpr_int.h:14
Definition: layer_base.h:86
#define BLACKCAT_DEFAULT_SYSTEM_T
Definition: common.h:49
auto flatten(SystemTag system_tag, Dim< X > shape)
Definition: flatten.h:63
input_shape_type input_shape() const
Definition: layer_base.h:75
std::true_type greedy_evaluate_delta
Definition: flatten.h:35
auto forward_propagation(const Matrix &x)
Definition: flatten.h:46
BCINLINE value_type size() const
Definition: dim.h:28
ValueType value_type
Definition: flatten.h:29
Flatten(bc::Dim< input_tensor_dim::value > input_shape)
Definition: flatten.h:42
std::true_type defines_single_predict
Definition: flatten.h:38
BCINLINE auto shape(Integers... ints)
Definition: shape.h:264
auto single_predict(const Vector &x)
Definition: flatten.h:51
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22
Definition: recycle_allocator.h:57