8 #ifndef BLACKCAT_NEURALNETWORK_FUNCTIONS_H_ 9 #define BLACKCAT_NEURALNETWORK_FUNCTIONS_H_ 12 #include "maxpooling.cu" 18 template<
class Stream,
class Indexes,
class Image,
class ImageOut>
26 Dim<2> strides = {-1,-1}) {
28 if (strides ==
Dim<2>{ -1,-1 })
31 BC_ASSERT((out.inner_shape().template subdim<0,2>() ==
32 (image.inner_shape().template subdim<0,2>() + padding*2)/strides),
33 "ASSERT MAX_POOLING_FORWARD" 34 "\nout.inner_shape() == " 35 "(image.inner_shape() + padding)/strides");
36 BC_ASSERT(out.dim(2) == image.dim(2),
"numb channels must be the same");
37 BC_ASSERT(out.dim(3) == image.dim(3),
"batch size must be the same");
39 stream.enqueue([=]() {
41 typename Stream::system_tag(),
45 image.dim(0), image.dim(1),
46 out.dim(0), out.dim(1),
47 krnl_shape[0], krnl_shape[1],
48 strides[0], strides[1],
49 padding[0], padding[1],
50 out.
data(), mask.data());
68 static_assert(std::is_same<
70 typename Indexes::value_type>::value,
73 static_assert(std::is_same<
74 typename Image::value_type,
75 typename ImageOut::value_type>::value,
76 "Delta/Image value_type must be the same");
78 if (strides ==
Dim<2>{ -1,-1 })
81 BC_ASSERT((delta.inner_shape().template subdim<0,2>() ==
82 (image.inner_shape().template subdim<0,2>() + padding*2)/strides),
83 "ASSERT MAX_POOLING_FORWARD" 84 "\nout.inner_shape() == " 85 "(image.inner_shape() + padding)/strides");
86 BC_ASSERT(delta.dim(2) == image.dim(2),
"numb channels must be the same");
87 BC_ASSERT(delta.dim(3) == image.dim(3),
"batch size must be the same");
89 using system_tag =
typename Stream::system_tag;
91 stream.enqueue([=]() {
95 image.data() + image.size(),
100 delta.data(), mask.data(),
101 image.dim(3), image.dim(2),
102 image.dim(0), image.dim(1),
103 delta.dim(0), delta.dim(1),
104 krnl_shape[0], krnl_shape[1],
105 strides[0], strides[1],
106 padding[0], padding[1],
117 ColumnImage col_image,
123 int numb_spatial_axis=2) {
125 static_assert(ColumnImage::tensor_dim == 2,
126 "ColumnImage must be a matrix");
127 static_assert(Image::tensor_dim == 3,
128 "2d Convolution expects a 3d-image input");
130 using system_tag =
typename Stream::system_tag;
132 stream.enqueue([=]() {
137 image.dim(1), image.dim(0),
138 krnl_shape[1], krnl_shape[0],
139 padding[1], padding[0],
140 strides[1], strides[0],
141 dilation[1], dilation[0],
152 ColumnImage col_image,
159 static_assert(ColumnImage::tensor_dim == 2,
160 "ColumnImage must be a matrix");
161 static_assert(Image::tensor_dim == 3,
162 "2d Convolution expects a 3d-image input");
164 stream.enqueue([=]() {
166 typename Stream::system_tag(),
169 image.dim(1), image.dim(0),
170 krnl_shape[1], krnl_shape[0],
171 padding[1], padding[0],
172 strides[1], strides[0],
173 dilation[1], dilation[0],
void im2col(Stream stream, ColumnImage col_image, Image image, bc::Dim< 3 > krnl_shape, bc::Dim< 2 > padding=bc::Dim< 2 >().fill(0), bc::Dim< 2 > strides=bc::Dim< 2 >().fill(1), bc::Dim< 2 > dilation=bc::Dim< 2 >().fill(1), int numb_spatial_axis=2)
Definition: functions.h:115
void im2col(bc::host_tag, const Dtype *data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, Dtype *data_col)
Definition: im2col.h:20
void col2im(Stream stream, ColumnImage col_image, Image image, bc::Dim< 3 > krnl_shape, bc::Dim< 2 > padding=bc::Dim< 2 >(), bc::Dim< 2 > strides=bc::Dim< 2 >().fill(1), bc::Dim< 2 > dilation=bc::Dim< 2 >().fill(1))
Definition: functions.h:150
void MaxPoolForward(bc::host_tag, const Dtype *img_data, const int num, const int channels, const int height, const int width, const int pool_h, const int pool_w, const int krnl_h, const int krnl_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, Dtype *out_data, int *mask)
Definition: maxpooling.h:28
class::::::Args static auto fill(bc::streams::Stream< bc::host_tag > stream, Begin begin, End end, Args... args)
Definition: algorithms.h:131
void col2im(bc::host_tag, const Dtype *data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, Dtype *data_col)
Definition: im2col.h:67
void MaxPoolBackward(bc::host_tag, const Dtype *top_diff, const int *mask, const int num, const int channels, const int height, const int width, const int pool_h, const int pool_w, const int krnl_h, const int krnl_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, Dtype *bottom_diff)
Definition: maxpooling.h:80
self_type & fill(value_type value)
Definition: tensor_iteralgos.h:1
void max_pooling_forward(Stream stream, Image image, ImageOut out, Indexes mask, Dim< 2 > krnl_shape, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides={-1,-1})
Definition: functions.h:19
#define BC_ASSERT(condition, message)
Definition: common.h:185
BCINLINE const value_type * data() const
Definition: dim.h:40
void max_pooling_backward(Stream stream, Image image, ImageOut delta, Indexes mask, Dim< 2 > krnl_shape, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(-1))
Definition: functions.h:59
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22