BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
functions.h
Go to the documentation of this file.
1 /*
2  * Caffe.h
3  *
4  * Created on: Oct 31, 2019
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCAT_NEURALNETWORK_FUNCTIONS_H_
9 #define BLACKCAT_NEURALNETWORK_FUNCTIONS_H_
10 
11 #include "maxpooling.h"
12 #include "maxpooling.cu"
13 #include "im2col.h"
14 #include "im2col.cu"
15 
16 namespace bc {
17 
18 template<class Stream, class Indexes, class Image, class ImageOut>
20  Stream stream,
21  Image image,
22  ImageOut out,
23  Indexes mask,
24  Dim<2> krnl_shape,
25  Dim<2> padding = Dim<2>().fill(0),
26  Dim<2> strides = {-1,-1}) {
27 
28  if (strides == Dim<2>{ -1,-1 })
29  strides = krnl_shape;
30 
31  BC_ASSERT((out.inner_shape().template subdim<0,2>() ==
32  (image.inner_shape().template subdim<0,2>() + padding*2)/strides),
33  "ASSERT MAX_POOLING_FORWARD"
34  "\nout.inner_shape() == "
35  "(image.inner_shape() + padding)/strides");
36  BC_ASSERT(out.dim(2) == image.dim(2), "numb channels must be the same");
37  BC_ASSERT(out.dim(3) == image.dim(3), "batch size must be the same");
38 
39  stream.enqueue([=]() {
41  typename Stream::system_tag(),
42  image.data(),
43  image.dim(3),
44  image.dim(2),
45  image.dim(0), image.dim(1),
46  out.dim(0), out.dim(1),
47  krnl_shape[0], krnl_shape[1],
48  strides[0], strides[1],
49  padding[0], padding[1],
50  out.data(), mask.data());
51  });
52 }
53 
54 template<
55  class Stream,
56  class Indexes,
57  class Image,
58  class ImageOut>
60  Stream stream,
61  Image image, //output delta (not initialized)
62  ImageOut delta, //delta from upper layer
63  Indexes mask, //indicies of delta from upper layer
64  Dim<2> krnl_shape,
65  Dim<2> padding = Dim<2>().fill(0 ),
66  Dim<2> strides = Dim<2>().fill(-1))
67 {
68  static_assert(std::is_same<
69  int,
70  typename Indexes::value_type>::value,
71  "Mask must be int");
72 
73  static_assert(std::is_same<
74  typename Image::value_type,
75  typename ImageOut::value_type>::value,
76  "Delta/Image value_type must be the same");
77 
78  if (strides == Dim<2>{ -1,-1 })
79  strides = krnl_shape;
80 
81  BC_ASSERT((delta.inner_shape().template subdim<0,2>() ==
82  (image.inner_shape().template subdim<0,2>() + padding*2)/strides),
83  "ASSERT MAX_POOLING_FORWARD"
84  "\nout.inner_shape() == "
85  "(image.inner_shape() + padding)/strides");
86  BC_ASSERT(delta.dim(2) == image.dim(2), "numb channels must be the same");
87  BC_ASSERT(delta.dim(3) == image.dim(3), "batch size must be the same");
88 
89  using system_tag = typename Stream::system_tag;
90 
91  stream.enqueue([=]() {
93  stream,
94  image.data(),
95  image.data() + image.size(),
96  0.0);
97 
99  system_tag(),
100  delta.data(), mask.data(),
101  image.dim(3), image.dim(2),
102  image.dim(0), image.dim(1),
103  delta.dim(0), delta.dim(1),
104  krnl_shape[0], krnl_shape[1],
105  strides[0], strides[1],
106  padding[0], padding[1],
107  image.data());
108  });
109 }
110 
111 template<
112  class Stream,
113  class ColumnImage,
114  class Image>
115 void im2col(
116  Stream stream,
117  ColumnImage col_image,
118  Image image,
119  bc::Dim<3> krnl_shape,
120  bc::Dim<2> padding = bc::Dim<2>().fill(0),
121  bc::Dim<2> strides = bc::Dim<2>().fill(1),
122  bc::Dim<2> dilation = bc::Dim<2>().fill(1),
123  int numb_spatial_axis=2) {
124 
125  static_assert(ColumnImage::tensor_dim == 2,
126  "ColumnImage must be a matrix");
127  static_assert(Image::tensor_dim == 3,
128  "2d Convolution expects a 3d-image input");
129 
130  using system_tag = typename Stream::system_tag;
131 
132  stream.enqueue([=]() {
134  system_tag(),
135  image.data(),
136  image.dim(2),
137  image.dim(1), image.dim(0),
138  krnl_shape[1], krnl_shape[0],
139  padding[1], padding[0],
140  strides[1], strides[0],
141  dilation[1], dilation[0],
142  col_image.data());
143  });
144 }
145 
146 template<
147  class Stream,
148  class ColumnImage,
149  class Image>
150 void col2im(
151  Stream stream,
152  ColumnImage col_image,
153  Image image,
154  bc::Dim<3> krnl_shape,
155  bc::Dim<2> padding = bc::Dim<2>(),
156  bc::Dim<2> strides = bc::Dim<2>().fill(1),
157  bc::Dim<2> dilation = bc::Dim<2>().fill(1)) {
158 
159  static_assert(ColumnImage::tensor_dim == 2,
160  "ColumnImage must be a matrix");
161  static_assert(Image::tensor_dim == 3,
162  "2d Convolution expects a 3d-image input");
163 
164  stream.enqueue([=]() {
166  typename Stream::system_tag(),
167  image.data(),
168  image.dim(2),
169  image.dim(1), image.dim(0),
170  krnl_shape[1], krnl_shape[0],
171  padding[1], padding[0],
172  strides[1], strides[0],
173  dilation[1], dilation[0],
174  col_image.data());
175  });
176 }
177 }
178 
179 #endif /* CAFFE_H_ */
void im2col(Stream stream, ColumnImage col_image, Image image, bc::Dim< 3 > krnl_shape, bc::Dim< 2 > padding=bc::Dim< 2 >().fill(0), bc::Dim< 2 > strides=bc::Dim< 2 >().fill(1), bc::Dim< 2 > dilation=bc::Dim< 2 >().fill(1), int numb_spatial_axis=2)
Definition: functions.h:115
void im2col(bc::host_tag, const Dtype *data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, Dtype *data_col)
Definition: im2col.h:20
void col2im(Stream stream, ColumnImage col_image, Image image, bc::Dim< 3 > krnl_shape, bc::Dim< 2 > padding=bc::Dim< 2 >(), bc::Dim< 2 > strides=bc::Dim< 2 >().fill(1), bc::Dim< 2 > dilation=bc::Dim< 2 >().fill(1))
Definition: functions.h:150
void MaxPoolForward(bc::host_tag, const Dtype *img_data, const int num, const int channels, const int height, const int width, const int pool_h, const int pool_w, const int krnl_h, const int krnl_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, Dtype *out_data, int *mask)
Definition: maxpooling.h:28
class::::::Args static auto fill(bc::streams::Stream< bc::host_tag > stream, Begin begin, End end, Args... args)
Definition: algorithms.h:131
void col2im(bc::host_tag, const Dtype *data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, Dtype *data_col)
Definition: im2col.h:67
void MaxPoolBackward(bc::host_tag, const Dtype *top_diff, const int *mask, const int num, const int channels, const int height, const int width, const int pool_h, const int pool_w, const int krnl_h, const int krnl_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, Dtype *bottom_diff)
Definition: maxpooling.h:80
self_type & fill(value_type value)
Definition: tensor_iteralgos.h:1
void max_pooling_forward(Stream stream, Image image, ImageOut out, Indexes mask, Dim< 2 > krnl_shape, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides={-1,-1})
Definition: functions.h:19
#define BC_ASSERT(condition, message)
Definition: common.h:185
BCINLINE const value_type * data() const
Definition: dim.h:40
Definition: device.h:27
void max_pooling_backward(Stream stream, Image image, ImageOut delta, Indexes mask, Dim< 2 > krnl_shape, Dim< 2 > padding=Dim< 2 >().fill(0), Dim< 2 > strides=Dim< 2 >().fill(-1))
Definition: functions.h:59
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22