BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
Functions
bc::caffe Namespace Reference

Functions

bool is_a_ge_zero_and_a_lt_b (int a, int b)
 
template<class Dtype >
void MaxPoolForward (bc::host_tag, const Dtype *img_data, const int num, const int channels, const int height, const int width, const int pool_h, const int pool_w, const int krnl_h, const int krnl_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, Dtype *out_data, int *mask)
 
template<typename Dtype >
void MaxPoolBackward (bc::host_tag, const Dtype *top_diff, const int *mask, const int num, const int channels, const int height, const int width, const int pool_h, const int pool_w, const int krnl_h, const int krnl_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, Dtype *bottom_diff)
 

Function Documentation

◆ is_a_ge_zero_and_a_lt_b()

bool bc::caffe::is_a_ge_zero_and_a_lt_b ( int  a,
int  b 
)
inline

◆ MaxPoolBackward()

template<typename Dtype >
void bc::caffe::MaxPoolBackward ( bc::host_tag  ,
const Dtype *  top_diff,
const int *  mask,
const int  num,
const int  channels,
const int  height,
const int  width,
const int  pool_h,
const int  pool_w,
const int  krnl_h,
const int  krnl_w,
const int  stride_h,
const int  stride_w,
const int  pad_h,
const int  pad_w,
Dtype *  bottom_diff 
)

◆ MaxPoolForward()

template<class Dtype >
void bc::caffe::MaxPoolForward ( bc::host_tag  ,
const Dtype *  img_data,
const int  num,
const int  channels,
const int  height,
const int  width,
const int  pool_h,
const int  pool_w,
const int  krnl_h,
const int  krnl_w,
const int  stride_h,
const int  stride_w,
const int  pad_h,
const int  pad_w,
Dtype *  out_data,
int *  mask 
)