BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
maxpooling.h
Go to the documentation of this file.
1 /*
2  * MaxPooling.h
3  *
4  * Created on: Nov 10, 2019
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCAT_TENSORS_CAFFE_MAXPOOLING_H_
9 #define BLACKCAT_TENSORS_CAFFE_MAXPOOLING_H_
10 
11 /*
12  * THIS IS NOT AN ORIGINAL CAFFE FILE.
13  * MAXPOOLING IMPLEMENTATION WAS ORIGINALLY CREATED BY THE CAFFE AUTHOR(S)
14  *
15  * Modifications to the indexing and how channels are handled.
16  * The data is also in col-major format despite the variables being the same.
17  *
18  */
19 #include "common.h"
20 
21 namespace bc {
22 
23 class host_tag;
24 
25 namespace caffe {
26 
27 template <class Dtype>
30  const Dtype* img_data,
31  const int num,
32  const int channels,
33  const int height, const int width,
34  const int pool_h, const int pool_w,
35  const int krnl_h, const int krnl_w,
36  const int stride_h, const int stride_w,
37  const int pad_h, const int pad_w,
38  Dtype* out_data, int* mask)
39 {
40  using std::min;
41  using std::max;
42 
43  int img_size = height * width;
44  int pool_size = pool_h * pool_w;
45 
46  int img_total_size = img_size * channels;
47  int pool_total_size = pool_size * channels;
48 
49  for (int n = 0; n < num; ++n) {
50  for (int c = 0; c < channels; ++c) {
51  for (int ph = 0; ph < pool_h; ++ph) {
52  for (int pw = 0; pw < pool_w; ++pw) {
53  int hstart = ph * stride_h - pad_h;
54  int wstart = pw * stride_w - pad_w;
55  int hend = min(hstart + krnl_h, height);
56  int wend = min(wstart + krnl_w, width);
57  hstart = max(hstart, 0);
58  wstart = max(wstart, 0);
59  const int pool_index = ph * pool_w + pw + c * pool_size;
60  for (int h = hstart; h < hend; ++h) {
61  for (int w = wstart; w < wend; ++w) {
62  const int index = h * width + w + c * img_size;
63  if (img_data[index] > out_data[pool_index]) {
64  out_data[pool_index] = img_data[index];
65  mask[pool_index] = index;
66  }
67  }
68  }
69  }
70  }
71  }
72 
73  img_data += img_total_size;
74  out_data += pool_total_size;
75  mask += pool_total_size;
76  }
77 }
78 
79 template <typename Dtype>
82  const Dtype* top_diff, const int* mask,
83  const int num, const int channels,
84  const int height, const int width,
85  const int pool_h, const int pool_w,
86  const int krnl_h, const int krnl_w,
87  const int stride_h, const int stride_w,
88  const int pad_h, const int pad_w,
89  Dtype* bottom_diff) {
90 
91  int pool_size = pool_h * pool_w;
92  int data_size = height * width;
93 
94  for (int n = 0; n < num; ++n) {
95  for (int c = 0; c < channels; ++c) {
96  for (int ph = 0; ph < pool_h; ++ph) {
97  for (int pw = 0; pw < pool_w; ++pw) {
98  const int pool_index = ph * pool_w + pw + c * pool_size;
99  const int bottom_index = mask[pool_index];
100  bottom_diff[bottom_index] += top_diff[pool_index];
101  }
102  }
103  }
104 
105  bottom_diff += data_size * channels;
106  top_diff += pool_size * channels;
107  mask += pool_size * channels;
108  }
109 }
110 
111 }
112 }
113 
114 #endif /* MAXPOOLING_H_ */
void MaxPoolForward(bc::host_tag, const Dtype *img_data, const int num, const int channels, const int height, const int width, const int pool_h, const int pool_w, const int krnl_h, const int krnl_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, Dtype *out_data, int *mask)
Definition: maxpooling.h:28
void MaxPoolBackward(bc::host_tag, const Dtype *top_diff, const int *mask, const int num, const int channels, const int height, const int width, const int pool_h, const int pool_w, const int krnl_h, const int krnl_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, Dtype *bottom_diff)
Definition: maxpooling.h:80
struct bc::oper::Min min
struct bc::oper::Max max
Definition: common.h:26
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22