BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
print.h
Go to the documentation of this file.
1 /*
2  * Print.h
3  *
4  * Created on: Jul 29, 2019
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCAT_TENSORS_TENSORS_UTILITY_PRINT_H_
9 #define BLACKCAT_TENSORS_TENSORS_UTILITY_PRINT_H_
10 
11 #include <string>
12 #include <algorithm>
13 
14 namespace bc {
15 namespace tensors {
16 namespace io {
17 
18 struct features
19 {
21  bool pretty = false;
22  bool sparse = false;
23 
24  int indent_lvl = 1;
25  const char indent_delim = ' ';
26 
27  features(std::size_t precision_,
28  bool pretty_=true,
29  bool sparse_=true):
30  precision(precision_),
31  pretty(pretty_),
32  sparse(sparse_) {}
33 
34  features inc_indent() const {
35  features copy = *this;
36  copy.indent_lvl++;
37  return copy;
38  }
39 
40  std::string indent() const {
41  if (pretty)
42  return std::string(indent_lvl, indent_delim);
43  else
44  return "";
45  }
46 
47  std::string bracket_wrap(const std::string& str) const {
48  if (pretty)
49  return "[" + str + "]";
50  else
51  return str;
52  }
53 };
54 
55 template<class ValueType>
56 static std::string format_value(const ValueType& s, features f) {
57  std::string fstr = !f.sparse || std::abs(s) > .1 ? std::to_string(s) : "";
58  int min_precision = f.precision > 1u ? f.precision : 1u;
59  if (fstr.length() < (unsigned)min_precision)
60  return fstr.append(min_precision - fstr.length(), ' ');
61  else {
62  auto decimal_point = std::find(fstr.begin(), fstr.end(), '.');
63  if (decimal_point == fstr.end())
64  return fstr;
65 
66  if (f.precision == 0)
67  return std::string(fstr.begin(), decimal_point);
68  else {
69  int decimal_length = std::min(
70  f.precision, (std::size_t)(fstr.end() - decimal_point));
71 
72  return std::string(fstr.begin(), decimal_point + decimal_length);
73  }
74  }
75 }
76 
77 template<class Tensor>
78 std::string to_string(
79  const Tensor& tensor,
80  features f,
82 {
83  std::string s = "";
84  if (f.pretty)
85  s += "[";
86 
87  for (bc::size_t m = 0; m < tensor.rows(); ++m) {
88 
89  if (f.pretty && m != 0)
90  s += f.indent() + '[';
91  else if (f.pretty)
92  s += '[';
93 
94  for (bc::size_t n = 0; n < tensor.cols(); ++n) {
95  s += format_value(tensor[n][m].data()[0], f);
96 
97  if (n != tensor.cols() - 1)
98  s+=", ";
99  }
100 
101  if (f.pretty)
102  s += "]";
103  if (m != tensor.rows()-1)
104  s += '\n';
105  }
106 
107  if (f.pretty)
108  s += "]";
109  return s;
110 }
111 
112 
113 template<class Tensor>
114 std::string to_string(const Tensor& tensor, features f, bc::traits::Integer<1>)
115 {
116  std::string s = "";
117 
118  for (bc::size_t m = 0; m < tensor.rows(); ++m) {
119  s += format_value(tensor[m].data()[0], f);
120 
121  if(m!=tensor.rows()-1)
122  s+=", ";
123  }
124 
125  return f.bracket_wrap(s);
126 }
127 
128 template<class Tensor>
129 std::string to_string(const Tensor& tensor, features f, bc::traits::Integer<0>)
130 {
131  std::string value = format_value(tensor.data()[0], f);
132  return f.pretty
133  ? "[" + value + "]"
134  : value;
135 }
136 
137 template<class Tensor, int X>
138 std::string to_string(const Tensor& tensor, features f, bc::traits::Integer<X>)
139 {
140  std::string s = "";
141 
142  for (auto it = tensor.begin(); it != tensor.end(); ++it) {
143  if (it!= tensor.begin())
144  s += f.indent();
145 
146  s += to_string(*it, f.inc_indent(), bc::traits::Integer<X-1>());
147 
148  if (it != tensor.end() - 1)
149  s += '\n';
150  }
151  return f.bracket_wrap(s);
152 }
153 
154 
155 }
156 }
157 }
158 
159 #endif /* PRINT_H_ */
const char indent_delim
Definition: print.h:25
Definition: constexpr_int.h:14
std::string to_string(const Tensor &tensor, features f, bc::traits::Integer< 2 >)
Definition: print.h:78
std::string to_string(int precision=8, bool pretty=true, bool sparse=false) const
Definition: tensor_utility.h:34
features(std::size_t precision_, bool pretty_=true, bool sparse_=true)
Definition: print.h:27
bool pretty
Definition: print.h:21
int indent_lvl
Definition: print.h:24
struct bc::oper::cmath_functions::Abs abs
struct bc::oper::Min min
class::::::Args static auto find(bc::streams::Stream< bc::host_tag > stream, Begin begin, End end, Args... args)
Definition: algorithms.h:124
std::string bracket_wrap(const std::string &str) const
Definition: print.h:47
std::size_t precision
Definition: print.h:20
int size_t
Definition: common.h:283
std::string indent() const
Definition: print.h:40
features inc_indent() const
Definition: print.h:34
Definition: cmath.h:17
auto end() const
Definition: tensor_base.h:95
Definition: print.h:18
bool sparse
Definition: print.h:22
void copy(const Tensor_Base< Xpr > &rv)
Definition: tensor_utility.h:2
auto begin() const
Definition: tensor_base.h:94
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22