BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
Functions
tensor_utility.h File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

template<class Xpr >
void copy (const Tensor_Base< Xpr > &rv)
 
std::string to_string (int precision=8, bool pretty=true, bool sparse=false) const
 
std::string to_raw_string (int precision=8) const
 
void print (int precision=8, bool pretty=true, bool sparse=false) const
 
void print_sparse (int precision=8, bool pretty=true) const
 
void raw_print (int precision=0, bool sparse=false) const
 
void print_dims () const
 
void print_leading_dims () const
 
std::ostream & operator<< (std::ostream &os, const Tensor_Base &self)
 

Function Documentation

◆ copy()

template<class Xpr >
void copy ( const Tensor_Base< Xpr > &  rv)

◆ operator<<()

friend std::ostream& operator<< ( std::ostream &  os,
const Tensor_Base &  self 
)

◆ print()

void print ( int  precision = 8,
bool  pretty = true,
bool  sparse = false 
) const

◆ print_dims()

void print_dims ( ) const

◆ print_leading_dims()

void print_leading_dims ( ) const

◆ print_sparse()

void print_sparse ( int  precision = 8,
bool  pretty = true 
) const

◆ raw_print()

void raw_print ( int  precision = 0,
bool  sparse = false 
) const

◆ to_raw_string()

std::string to_raw_string ( int  precision = 8) const

◆ to_string()

std::string to_string ( int  precision = 8,
bool  pretty = true,
bool  sparse = false 
) const