BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
tensor_utility.h
Go to the documentation of this file.
1  template<class Xpr>
2  void copy(const Tensor_Base<Xpr>& rv) {
3  static_assert(ExpressionTemplate::tensor_iterator_dim <= 1, "copy only accepts continuous");
4  static_assert(Xpr::tensor_iterator_dim <= 1, "copy only accepts continuous");
5 
6  if (this->size() != rv.size()) {
7  bc::printerr("Attempting to copy two different size tensors (ERROR)");
8  throw 1;
9  }
10 
11 #ifdef __CUDACC__
12  using copy_impl = bc::Utility<device_tag>;
13  using same_system = std::is_same<system_tag, typename Xpr::system_tag>;
14  if (std::is_same<system_tag, typename Xpr::system_tag>::value) {
15  //Ensures it only compiles when true
16  bc::traits::constexpr_if<same_system::value>(
17  bc::traits::bind([](auto& self, const auto& rv){
18  self = rv;
19  }, *this, rv));
20  } else if (std::is_same<system_tag, device_tag>::value) {
21  copy_impl::HostToDevice(this->data(),
22  rv.data(),
23  this->size());
24  } else {
25  copy_impl::DeviceToHost(this->data(),
26  rv.data(),
27  this->size());
28  }
29 #else
30  (*this) = rv;
31 #endif
32  }
33 
34  std::string to_string(
35  int precision=8,
36  bool pretty=true,
37  bool sparse=false) const
38  {
39  using traits = exprs::expression_traits<ExpressionTemplate>;
40  using is_host = std::is_same<bc::host_tag, system_tag>;
41 
42 #ifdef __CUDACC__
43  using allocator_type = std::conditional_t<
44  is_host::value,
47 #else
48  using allocator_type = bc::Allocator<value_type, system_tag>;
49 #endif
50  using tensor_type = Tensor_Base<exprs::Array<
52  value_type,
53  allocator_type>>;
54 
55  using host_tensor_type = Tensor_Base<exprs::Array<
56  bc::Shape<tensor_dim>,
57  value_type,
59 
60  auto fs = bc::tensors::io::features(precision, pretty, sparse);
62 
63  constexpr bool is_array = traits::is_array::value;
64  constexpr bool no_copy_required = /*(is_managed::value || */
65  is_host::value /*)*/ && is_array;
66 
67  static constexpr bool is_continuous = traits::is_continuous::value;
68 
69  return bc::traits::constexpr_if<no_copy_required>(
70  bc::traits::bind([&](const auto& der)
71  {
72  return bc::tensors::io::to_string(der, fs, dim);
73  }, *this),
74  bc::traits::constexpr_else_if<is_continuous && is_array>(
75  bc::traits::bind([&](const auto& der)
76  {
77  host_tensor_type tensor(der.get_shape());
78  tensor.copy(der);
79  return bc::tensors::io::to_string(tensor, fs, dim);
80  }, *this),
82  bc::traits::bind([&](const auto& der)
83  {
84  tensor_type copy(der);
86  return bc::tensors::io::to_string(copy, fs, dim);
87  }, *this))
88  ));
89  }
90 
91  std::string to_raw_string(int precision=8) const {
92  return this->to_string(precision, false, false);
93  }
94 
95  void print(int precision=8, bool pretty=true, bool sparse=false) const {
96  std::cout << this->to_string(precision, pretty, sparse) << std::endl;
97  }
98 
99  void print_sparse(int precision=8, bool pretty=true) const {
100  std::cout << this->to_string(precision, pretty, true) << std::endl;
101  }
102 
103  void raw_print(int precision=0, bool sparse=false) const {
104  std::cout << this->to_string(precision, false, sparse) << std::endl;
105  }
106 
107  void print_dims() const {
108  for (int i = 0; i < tensor_dim; ++i) {
109  std::cout << "[" << this->dim(i) << "]";
110  }
111  std::cout << std::endl;
112  }
113 
114  void print_leading_dims() const {
115  for (int i = 0; i < tensor_dim; ++i) {
116  std::cout << "[" << this->leading_dim(i) << "]";
117  }
118  std::cout << std::endl;
119  }
120 
121  friend std::ostream& operator << (
122  std::ostream& os,
123  const Tensor_Base& self) {
124  return os << self.to_string();
125  }
friend std::ostream & operator<<(std::ostream &os, const Tensor_Base &self)
Definition: tensor_utility.h:121
Bind< Function, Args &&... > bind(Function function, Args &&... args)
Definition: bind.h:105
void print_sparse(int precision=8, bool pretty=true) const
Definition: tensor_utility.h:99
Definition: shape.h:17
std::string to_raw_string(int precision=8) const
Definition: tensor_utility.h:91
Definition: constexpr_int.h:14
auto constexpr_else(Function function)
Definition: constexpr_if.h:61
std::string to_string(const Tensor &tensor, features f, bc::traits::Integer< 2 >)
Definition: print.h:78
void device_sync()
Definition: stream_synchronization.h:20
BCINLINE auto dim(const Integers &... ints)
Definition: dim.h:336
std::string to_string(int precision=8, bool pretty=true, bool sparse=false) const
Definition: tensor_utility.h:34
void print(int precision=8, bool pretty=true, bool sparse=false) const
Definition: tensor_utility.h:95
void print_leading_dims() const
Definition: tensor_utility.h:114
Definition: device.h:20
Definition: filesystem.h:11
Definition: allocators.h:20
void print_dims() const
Definition: tensor_utility.h:107
Definition: print.h:18
void printerr(const Ts &... args)
Definition: common.h:170
void raw_print(int precision=0, bool sparse=false) const
Definition: tensor_utility.h:103
void copy(const Tensor_Base< Xpr > &rv)
Definition: tensor_utility.h:2
Definition: basic_allocators.h:104