BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
softmax.h
Go to the documentation of this file.
1 /*
2  * SoftMax.h
3  *
4  * Created on: Jul 15, 2019
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCAT_NEURALNETWORK_SOFTMAX_H_
9 #define BLACKCAT_NEURALNETWORK_SOFTMAX_H_
10 
11 #include "layer_base.h"
12 
13 namespace bc {
14 namespace nn {
15 
16 template<class SystemTag, class ValueType>
17 struct SoftMax:
18  public Layer_Base<
19  SoftMax<SystemTag, ValueType>,
20  Tensor_Descriptor<ValueType, SystemTag, Integer<1>>>
21 {
22  using system_tag = SystemTag;
23  using value_type = ValueType;
24 
27 
30 
31 private:
32 
33  mat y;
34 
35 public:
36 
37  SoftMax(int inputs):
38  parent_type(__func__, {inputs}, {inputs}) {}
39 
40  template<class Allocator>
42  for (int i = 0; i < x.cols(); ++i)
43  y[i] = bc::exp(x[i]) / bc::tensors::sum(exp(x[i]));
44 
45  return y;
46  }
47  template<class Allocator>
49  return bc::exp(x) / bc::tensors::sum(exp(x));
50  }
51 
52 
53  template<class X, class Matrix>
54  auto back_propagation(const X& x, const Matrix& dy) {
55  return dy;
56  }
57 
58  virtual void set_batch_size_hook(int bs) override {
59  y = mat(this->output_size(), bs);
60  }
61 };
62 
63 
64 template<class ValueType, class SystemTag>
66  return SoftMax<SystemTag, ValueType>(inputs);
67 }
68 template<class SystemTag>
69 auto softmax(SystemTag system_tag, int inputs) {
71 }
72 
73 auto softmax(int inputs) {
75  typename BLACKCAT_DEFAULT_SYSTEM_T::default_floating_point_type>(inputs);
76 }
77 
78 }
79 }
80 
81 
82 
83 
84 #endif /* SOFTMAX_H_ */
SoftMax< SystemTag, ValueType > softmax(SystemTag system_tag, int inputs)
Definition: softmax.h:65
const auto & forward_propagation(const bc::Matrix< value_type, Allocator > &x)
Definition: softmax.h:41
bc::Matrix< ValueType, bc::Allocator< ValueType, SystemTag > > mat
Definition: softmax.h:28
Definition: layer_base.h:86
#define BLACKCAT_DEFAULT_SYSTEM_T
Definition: common.h:49
Definition: softmax.h:17
auto forward_propagation(const bc::Vector< value_type, Allocator > &x)
Definition: softmax.h:48
virtual void set_batch_size_hook(int bs) override
Definition: softmax.h:58
auto sum(const Expression_Base< Expression > &tensor)
Definition: tensor_static_functions.h:15
SoftMax(int inputs)
Definition: softmax.h:37
auto back_propagation(const X &x, const Matrix &dy)
Definition: softmax.h:54
SystemTag system_tag
Definition: softmax.h:22
ValueType value_type
Definition: softmax.h:23
BCINLINE size_t cols() const
Definition: shape.h:81
struct bc::oper::cmath_functions::Exp exp
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22