BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
host.h
Go to the documentation of this file.
1 /*
2  * Host.h
3  *
4  * Created on: Dec 12, 2018
5  * Author: joseph
6  */
7 
8 #ifndef BC_UTILITY_HOST_H_
9 #define BC_UTILITY_HOST_H_
10 
11 namespace bc {
12 namespace utility {
13 
14 template<class SystemTag>
15 struct Utility;
16 
17 template<>
18 struct Utility<host_tag> {
19 
20  template<class T, class U, class V>
21  static void copy(T* to, U* from, V size) {
23  for (int i = 0; i < size; ++i) {
24  to[i] = from[i];
25  }
26  }
27 
28  template<class T, class U>
29  static void HostToDevice(T* device_ptr, U* host_ptr, bc::size_t size) {
30  copy(device_ptr, host_ptr, size);
31  }
32 
33  template<class T, class U>
34  static void DeviceToHost(T* host_ptr, U* device_ptr, bc::size_t size) {
35  copy(host_ptr, device_ptr, size);
36  }
37 };
38 
39 }
40 }
41 
42 
43 #endif /* HOST_H_ */
static void HostToDevice(T *device_ptr, U *host_ptr, bc::size_t size)
Definition: host.h:29
#define BC_omp_for__
Definition: common.h:269
Definition: device.h:20
int size_t
Definition: common.h:283
static void DeviceToHost(T *host_ptr, U *device_ptr, bc::size_t size)
Definition: host.h:34
static void copy(T *to, U *from, V size)
Definition: host.h:21
Definition: common.h:26
void copy(const Tensor_Base< Xpr > &rv)
Definition: tensor_utility.h:2
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22