BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
Classes | Namespaces | Macros | Typedefs | Functions
polymorphic_layer_base.h File Reference
#include "../layer_loader.h"
#include "layer_traits.h"
#include <string>
#include <sys/types.h>
#include <sys/stat.h>
#include <fstream>
#include <ostream>
Include dependency graph for polymorphic_layer_base.h:

Go to the source code of this file.

Classes

struct  bc::nn::network_runtime_traits< LearningRateValueType >
 
struct  bc::nn::Polymorphic_Layer_Base< Dimension, ValueType, SystemTag, Allocator, OutputDimension, OutputValueType, OutputSystemTag, OutputAllocator >
 

Namespaces

 bc
 The Evaluator determines if an expression needs to be greedily optimized.
 
 bc::nn
 

Macros

#define LAYER_H_
 

Typedefs

template<class SystemTag , class ValueType >
using bc::nn::layer_default_allocator = bc::allocators::Polymorphic_Allocator< SystemTag, ValueType >
 

Functions

template<class... ArgsA, class... ArgsB>
void bc::nn::link (std::shared_ptr< Layer_Base< ArgsA... >> prev, std::shared_ptr< Layer_Base< ArgsB... >> next)
 

Macro Definition Documentation

◆ LAYER_H_

#define LAYER_H_