BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
Classes | Namespaces | Functions | Variables
logging_output_layer.h File Reference
#include "output_layer.h"
Include dependency graph for logging_output_layer.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  bc::nn::Mean_Absolute_Error
 
struct  bc::nn::Root_Mean_Squared_Error
 
struct  bc::nn::Mean_Squared_Error
 
struct  bc::nn::Mean_Absolute_Percent_Error
 
struct  bc::nn::Logging_Output_Layer< SystemTag, ValueType, ErrorFunction >
 

Namespaces

 bc
 The Evaluator determines if an expression needs to be greedily optimized.
 
 bc::nn
 

Functions

template<class ValueType , class SystemTag , class ErrorFunction = Mean_Absolute_Error>
Logging_Output_Layer< SystemTag, ValueType > bc::nn::logging_output_layer (SystemTag system_tag, bc::size_t inputs, ErrorFunction error_function=ErrorFunction(), std::ostream &os=std::cout)
 
template<class SystemTag , class ErrorFunction = Mean_Absolute_Error>
auto bc::nn::logging_output_layer (SystemTag system_tag, bc::size_t inputs, ErrorFunction error_function=ErrorFunction(), std::ostream &os=std::cout)
 
template<class ErrorFunction = Mean_Absolute_Error>
auto bc::nn::logging_output_layer (int inputs, ErrorFunction error_function=ErrorFunction(), std::ostream &os=std::cout)
 

Variables

struct bc::nn::Mean_Absolute_Error bc::nn::MAE
 
struct bc::nn::Root_Mean_Squared_Error bc::nn::RMSE
 
struct bc::nn::Mean_Squared_Error bc::nn::MSE
 
struct bc::nn::Mean_Absolute_Percent_Error bc::nn::MAPE