8 #ifndef BLACKCATTENSORS_NEURALNETWORKS_LAYERS_LOGGING_LAYER_H_ 9 #define BLACKCATTENSORS_NEURALNETWORKS_LAYERS_LOGGING_LAYER_H_ 17 template<
class Actual,
class Expected>
25 template<
class Actual,
class Expected>
33 template<
class Actual,
class Expected>
41 template<
class Actual,
class Expected>
44 static constexpr
typename Actual::value_type epsilon = .001;
50 template<
class SystemTag,
class ValueType,
class ErrorFunction=Mean_Absolute_Error>
59 bool logging_enabled =
true;
60 unsigned curr_index = 0;
61 unsigned skip_every_n_backprops = 10;
69 ErrorFunction error_function_):
71 error_function(error_function_),
74 template <
class Tensor>
76 return x.shallow_copy();
80 skip_every_n_backprops = skip_every_n_backprops_;
85 logging_enabled = enable_logging;
89 template <
class TensorX,
class TensorY>
93 if (logging_enabled && curr_index % skip_every_n_backprops == 0)
94 (*logger) <<
"Batch index: " << curr_index <<
" loss: " <<
scalar(error_function(x, y)).
to_string() <<
"\n";
105 SystemTag system_tag,
107 ErrorFunction error_function=ErrorFunction(), std::ostream& os=std::cout) {
114 SystemTag system_tag,
117 error_function=ErrorFunction(), std::ostream& os=std::cout) {
121 typename SystemTag::default_floating_point_type,
122 ErrorFunction>(os, inputs, error_function);
126 template<
class ErrorFunction=Mean_Absolute_Error>
127 auto logging_output_layer(
int inputs, ErrorFunction error_function=ErrorFunction(), std::ostream& os=std::cout) {
129 typename BLACKCAT_DEFAULT_SYSTEM_T::default_floating_point_type, ErrorFunction>(os, inputs, error_function);
SystemTag system_tag
Definition: logging_output_layer.h:55
Logging_Output_Layer & skip_every(unsigned skip_every_n_backprops_)
Definition: logging_output_layer.h:79
Definition: logging_output_layer.h:16
auto operator()(const Actual &a, const Expected &e) const
Definition: logging_output_layer.h:18
#define BLACKCAT_DEFAULT_SYSTEM_T
Definition: common.h:49
Definition: output_layer.h:17
Logging_Output_Layer< SystemTag, ValueType > logging_output_layer(SystemTag system_tag, bc::size_t inputs, ErrorFunction error_function=ErrorFunction(), std::ostream &os=std::cout)
Definition: logging_output_layer.h:104
struct bc::nn::Root_Mean_Squared_Error RMSE
auto back_propagation(const TensorX &x, const TensorY &y)
Definition: logging_output_layer.h:90
Definition: logging_output_layer.h:51
struct bc::oper::cmath_functions::Abs abs
std::ostream * logger
Definition: logging_output_layer.h:64
struct bc::oper::cmath_functions::Sqrt sqrt
Definition: logging_output_layer.h:24
int size_t
Definition: common.h:283
auto sum(const Expression_Base< Expression > &tensor)
Definition: tensor_static_functions.h:15
struct bc::nn::Mean_Absolute_Error MAE
struct bc::nn::Mean_Absolute_Percent_Error MAPE
Logging_Output_Layer & enable_logging(bool enable_logging=true)
Definition: logging_output_layer.h:84
Logging_Output_Layer(std::ostream &logger, bc::size_t inputs, ErrorFunction error_function_)
Definition: logging_output_layer.h:66
Definition: logging_output_layer.h:32
auto forward_propagation(const Tensor &x)
Definition: logging_output_layer.h:75
ValueType value_type
Definition: logging_output_layer.h:56
ErrorFunction error_function
Definition: logging_output_layer.h:63
std::string to_string(int precision=8, bool pretty=true, bool sparse=false) const
Definition: tensor_base.h:35
Definition: logging_output_layer.h:40
struct bc::nn::Mean_Squared_Error MSE
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22
struct bc::oper::cmath_functions::Pow2 pow2