BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
logging_output_layer.h
Go to the documentation of this file.
1 /*
2  * FeedForward.cu
3  *
4  * Created on: Jan 28, 2018
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCATTENSORS_NEURALNETWORKS_LAYERS_LOGGING_LAYER_H_
9 #define BLACKCATTENSORS_NEURALNETWORKS_LAYERS_LOGGING_LAYER_H_
10 
11 #include "output_layer.h"
12 
13 namespace bc {
14 namespace nn {
15 
17  template<class Actual, class Expected>
18  auto operator () (const Actual& a, const Expected& e) const {
19  auto residual = a-e;
20  return bc::sum(bc::abs(residual)) / (residual).size();
21  }
22 } MAE;
23 
25  template<class Actual, class Expected>
26  auto operator () (const Actual& a, const Expected& e) const {
27  auto residual = a-e;
28  return bc::sqrt(bc::sum(bc::pow2(residual)) / residual.size());
29  }
30 } RMSE;
31 
33  template<class Actual, class Expected>
34  auto operator () (const Actual& a, const Expected& e) const {
35  auto residual = a-e;
36  return bc::sum(bc::pow2(residual)) / residual.size();
37  }
38 } MSE;
39 
41  template<class Actual, class Expected>
42  auto operator () (const Actual& a, const Expected& e) const {
43  auto residual = a-e;
44  static constexpr typename Actual::value_type epsilon = .001;
45  return bc::sum(bc::abs(residual/(a+epsilon))) / residual.size();
46  }
47 } MAPE;
48 
49 
50 template<class SystemTag, class ValueType, class ErrorFunction=Mean_Absolute_Error>
52  Output_Layer<SystemTag,ValueType> {
53 
55  using system_tag = SystemTag;
56  using value_type = ValueType;
58 
59  bool logging_enabled = true;
60  unsigned curr_index = 0;
61  unsigned skip_every_n_backprops = 10;
62 
63  ErrorFunction error_function;
64  std::ostream* logger;
65 
67  std::ostream& logger,
68  bc::size_t inputs,
69  ErrorFunction error_function_):
70  parent(inputs),
71  error_function(error_function_),
72  logger(&logger) {}
73 
74  template <class Tensor>
75  auto forward_propagation(const Tensor& x) {
76  return x.shallow_copy();
77  }
78 
79  Logging_Output_Layer& skip_every(unsigned skip_every_n_backprops_) {
80  skip_every_n_backprops = skip_every_n_backprops_;
81  return *this;
82  }
83 
84  Logging_Output_Layer& enable_logging(bool enable_logging=true) {
85  logging_enabled = enable_logging;
86  return *this;
87  }
88 
89  template <class TensorX, class TensorY>
90  auto back_propagation(const TensorX& x, const TensorY& y) {
91  curr_index++;
92 
93  if (logging_enabled && curr_index % skip_every_n_backprops == 0)
94  (*logger) << "Batch index: " << curr_index << " loss: " << scalar(error_function(x, y)).to_string() << "\n";
95  return x - y;
96  }
97 };
98 
99 #ifndef BC_CLING_JIT
100 template<
101  class ValueType,
102  class SystemTag,
103  class ErrorFunction=Mean_Absolute_Error>
105  SystemTag system_tag,
106  bc::size_t inputs,
107  ErrorFunction error_function=ErrorFunction(), std::ostream& os=std::cout) {
108  return Logging_Output_Layer<SystemTag, ValueType>(os, inputs, error_function);
109 }
110 template<
111  class SystemTag,
112  class ErrorFunction=Mean_Absolute_Error>
114  SystemTag system_tag,
115  bc::size_t inputs,
116  ErrorFunction
117  error_function=ErrorFunction(), std::ostream& os=std::cout) {
118 
119  return Logging_Output_Layer<
120  SystemTag,
121  typename SystemTag::default_floating_point_type,
122  ErrorFunction>(os, inputs, error_function);
123 }
124 #endif
125 
126 template<class ErrorFunction=Mean_Absolute_Error>
127 auto logging_output_layer(int inputs, ErrorFunction error_function=ErrorFunction(), std::ostream& os=std::cout) {
129  typename BLACKCAT_DEFAULT_SYSTEM_T::default_floating_point_type, ErrorFunction>(os, inputs, error_function);
130 }
131 
132 
133 }
134 }
135 
136 
137 
138 #endif /* FEEDFORWARD_CU_ */
SystemTag system_tag
Definition: logging_output_layer.h:55
Logging_Output_Layer & skip_every(unsigned skip_every_n_backprops_)
Definition: logging_output_layer.h:79
Definition: logging_output_layer.h:16
auto operator()(const Actual &a, const Expected &e) const
Definition: logging_output_layer.h:18
#define BLACKCAT_DEFAULT_SYSTEM_T
Definition: common.h:49
Definition: output_layer.h:17
Logging_Output_Layer< SystemTag, ValueType > logging_output_layer(SystemTag system_tag, bc::size_t inputs, ErrorFunction error_function=ErrorFunction(), std::ostream &os=std::cout)
Definition: logging_output_layer.h:104
struct bc::nn::Root_Mean_Squared_Error RMSE
auto back_propagation(const TensorX &x, const TensorY &y)
Definition: logging_output_layer.h:90
Definition: logging_output_layer.h:51
struct bc::oper::cmath_functions::Abs abs
std::ostream * logger
Definition: logging_output_layer.h:64
struct bc::oper::cmath_functions::Sqrt sqrt
Definition: logging_output_layer.h:24
int size_t
Definition: common.h:283
auto sum(const Expression_Base< Expression > &tensor)
Definition: tensor_static_functions.h:15
struct bc::nn::Mean_Absolute_Error MAE
struct bc::nn::Mean_Absolute_Percent_Error MAPE
Definition: cmath.h:17
Logging_Output_Layer & enable_logging(bool enable_logging=true)
Definition: logging_output_layer.h:84
Logging_Output_Layer(std::ostream &logger, bc::size_t inputs, ErrorFunction error_function_)
Definition: logging_output_layer.h:66
Definition: logging_output_layer.h:32
auto forward_propagation(const Tensor &x)
Definition: logging_output_layer.h:75
ValueType value_type
Definition: logging_output_layer.h:56
ErrorFunction error_function
Definition: logging_output_layer.h:63
std::string to_string(int precision=8, bool pretty=true, bool sparse=false) const
Definition: tensor_base.h:35
Definition: logging_output_layer.h:40
struct bc::nn::Mean_Squared_Error MSE
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22
struct bc::oper::cmath_functions::Pow2 pow2