8 #ifndef BLACKCAT_NEURALNETWORK_NEURALNETWORK_H_ 9 #define BLACKCAT_NEURALNETWORK_NEURALNETWORK_H_ 15 #include <sys/types.h> 33 template<
class ... Layers>
44 double m_learning_rate = m_layer_chain.head().layer().get_learning_rate();
52 if (is_recurrent::value) {
53 m_layer_chain.for_each([&](
auto& layer) {
54 layer.get_cache().enable_recurrent_caching();
76 auto fp_caller = [](
auto& layer,
const auto& X) {
77 return layer.forward_propagation(X);
81 return m_layer_chain.for_each_propagate(fp_caller, tensor);
91 auto bp_caller = [](
auto& layer,
const auto& Dy) {
92 return layer.back_propagation(Dy);
95 auto& last_layer = m_layer_chain.tail();
96 auto dx = last_layer.reverse_for_each_propagate(bp_caller, tensor);
98 m_layer_chain.for_each([&](
auto& layer) {
99 layer.increment_time_index();
114 auto fp_caller = [](
auto& layer,
const auto& X) {
115 return layer.predict(X);
119 return m_layer_chain.for_each_propagate(fp_caller, tensor);
129 auto fp_caller = [](
auto& layer,
const auto& X) {
130 return layer.single_predict(X);
134 return m_layer_chain.for_each_propagate(fp_caller, tensor);
153 m_learning_rate = lr;
154 m_layer_chain.for_each([&](
auto& layer) {
155 layer.set_learning_rate(lr);
161 return m_learning_rate;
168 m_batch_size = batch_sz;
169 m_layer_chain.for_each([&](
auto& layer) {
170 layer.set_batch_size(batch_sz);
181 BC_ASSERT(batch_index<batch_size(),
"Require: batch_index < batch_size");
183 m_layer_chain.for_each([&](
auto& layer) {
184 layer.zero_time_index();
185 layer.copy_training_data_to_single_predict(batch_index);
196 m_layer_chain.for_each([&](
auto& layer) {
197 layer.zero_time_index();
203 m_layer_chain.for_each([ ](
auto& layer) {layer.update_weights();});
208 return m_layer_chain.head().layer().input_size();
214 return m_layer_chain.tail().layer().output_size();
219 return m_layer_chain.head().layer().batch_size();
226 std::string architecture =
"";
227 m_layer_chain.for_each([&](
auto& layer) {
228 architecture += layer.get_string_architecture() +
"\n";
238 void save(std::string directory_name) {
241 if (directory_name ==
".")
244 if (directory_name !=
"" &&
250 auto get_filepath = [&](std::string filename) {
256 std::ofstream os(get_filepath(
"architecture.yaml"));
257 os << get_string_architecture();
262 std::ofstream os(get_filepath(
"meta"));
263 os << this->get_learning_rate() <<
'\n';
264 os << this->batch_size() <<
'\n';
271 m_layer_chain.for_each([&](
auto& layer) {
276 layer.save_from_cache(loader, layer.get_cache());
284 void load(std::string directory_name) {
287 auto get_filepath = [&](std::string filename) {
294 m_layer_chain.for_each([&](
auto& layer) {
298 layer.load_to_cache(loader, layer.get_cache());
302 std::ifstream is(get_filepath(
"meta"));
305 std::getline(is, tmp);
306 set_learning_rate(std::stod(tmp));
307 std::getline(is, tmp);
308 set_batch_size(std::stoi(tmp));
318 template<
class ... Layers>
auto & get_layer()
Returns a reference to the layer specified by the given index.
Definition: network.h:143
int mkdir(const std::string &name)
Definition: filesystem.h:31
Definition: constexpr_int.h:14
std::string get_string_architecture() const
Returns a yaml representation of the neural network.
Definition: network.h:225
auto single_predict(const T &tensor)
Returns the output of a single input.
Definition: network.h:128
Definition: layer_loader.h:19
bc::string make_path(const bc::string &path)
Definition: filesystem.h:40
bool directory_exists(const std::string &name)
Definition: filesystem.h:21
auto forward_propagation(const T &tensor)
Calls forward propagation on each of the neural_network's layers The time index will be set to zero p...
Definition: network.h:75
void update_weights()
Updates the weights of each Layer based upon the current stored gradients.
Definition: network.h:202
void set_current_layer_index(int layer_index)
Definition: layer_loader.h:32
void zero_time_index()
Sets the expression_template time_index to zero.
Definition: network.h:195
bc::traits::conditional_detected_t< detail::query_forward_requires_outputs, T, std::false_type > is_recurrent_layer
Definition: network.h:24
Definition: type_traits.h:130
int size_t
Definition: common.h:283
bc::size_t batch_size() const
returns the batch_size of the neural network.
Definition: network.h:218
void set_batch_size(int batch_sz)
Sets the batch_size of the entire Neural_Network The intermediate values are discarded when setting t...
Definition: network.h:167
bc::size_t output_size() const
returns the output_size of the last layer
Definition: network.h:213
void copy_training_data_to_single_predict(int batch_index)
Copies the given batch_index from the training cell_state to the inference cell_state.
Definition: network.h:180
auto neuralnetwork(Layers ... layers)
Factory method for creating neural_networks.
Definition: network.h:319
double get_learning_rate() const
Returns the current global learning rate.
Definition: network.h:160
typename conditional_detected< func, TestType, DefaultType >::type conditional_detected_t
Definition: type_traits.h:87
typename T::forward_requires_outputs query_forward_requires_outputs
Definition: layer_traits.h:16
void make_current_directory()
Definition: layer_loader.h:78
NeuralNetwork(Layers... layers)
Basic Constructor for Neural Networks.
Definition: network.h:50
layer_chain m_layer_chain
Definition: network.h:43
bc::size_t input_size() const
returns the input_size of the first layer
Definition: network.h:207
#define BC_ASSERT(condition, message)
Definition: common.h:185
void set_learning_rate(double lr)
Sets the learning for each layer in the Neural_Network.
Definition: network.h:152
void load(std::string directory_name)
Loads a neural network from a previously saved instance.
Definition: network.h:284
auto back_propagation(const T &tensor)
Calls back-propagation on each of the neural_network's layers The time index will be incremented afte...
Definition: network.h:90
auto & get_layer() const
Returns a const reference to the layer specified by the given index.
Definition: network.h:138
void set_current_layer_name(string current_layername)
Definition: layer_loader.h:28
auto predict(const T &tensor)
Returns the output of a single batch.
Definition: network.h:113
the Neural_Network
Definition: network.h:34
void save(std::string directory_name)
Creates the directory directory_name using mkdir.
Definition: network.h:238
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22