BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
network.h
Go to the documentation of this file.
1 /*
2  * NeuralNetwork.h
3  *
4  * Created on: Mar 5, 2018
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCAT_NEURALNETWORK_NEURALNETWORK_H_
9 #define BLACKCAT_NEURALNETWORK_NEURALNETWORK_H_
10 
11 #include "layers/layer_traits.h"
12 
13 #include "layer_chain.h"
14 #include "layer_loader.h"
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 
18 namespace bc {
19 namespace nn {
20 namespace detail {
21 
22 template<class T>
25 }
26 
33 template<class ... Layers>
34 struct NeuralNetwork {
35 
36  using self = NeuralNetwork<Layers...>;
38  using layer_chain = LayerChain<
40  void,
41  Layers...>;
42 
44  double m_learning_rate = m_layer_chain.head().layer().get_learning_rate();
45  bc::size_t m_batch_size = 1;
46 
50  NeuralNetwork(Layers... layers): m_layer_chain(layers...)
51  {
52  if (is_recurrent::value) {
53  m_layer_chain.for_each([&](auto& layer) {
54  layer.get_cache().enable_recurrent_caching();
55  });
56  }
57  }
58 
74  template<class T>
75  auto forward_propagation(const T& tensor) {
76  auto fp_caller = [](auto& layer, const auto& X) {
77  return layer.forward_propagation(X);
78  };
79 
80  zero_time_index();
81  return m_layer_chain.for_each_propagate(fp_caller, tensor);
82  }
83 
89  template<class T>
90  auto back_propagation(const T& tensor) {
91  auto bp_caller = [](auto& layer, const auto& Dy) {
92  return layer.back_propagation(Dy);
93  };
94 
95  auto& last_layer = m_layer_chain.tail();
96  auto dx = last_layer.reverse_for_each_propagate(bp_caller, tensor);
97 
98  m_layer_chain.for_each([&](auto& layer) {
99  layer.increment_time_index();
100  });
101 
102  return dx;
103  }
104 
112  template<class T>
113  auto predict(const T& tensor) {
114  auto fp_caller = [](auto& layer, const auto& X) {
115  return layer.predict(X);
116  };
117 
118  zero_time_index();
119  return m_layer_chain.for_each_propagate(fp_caller, tensor);
120  }
121 
127  template<class T>
128  auto single_predict(const T& tensor) {
129  auto fp_caller = [](auto& layer, const auto& X) {
130  return layer.single_predict(X);
131  };
132 
133  zero_time_index();
134  return m_layer_chain.for_each_propagate(fp_caller, tensor);
135  }
136 
138  template<int X> auto& get_layer() const {
139  return m_layer_chain.get(bc::traits::Integer<X>());
140  }
141 
143  template<int X> auto& get_layer() {
144  return m_layer_chain.get(bc::traits::Integer<X>());
145  }
146 
152  void set_learning_rate(double lr) {
153  m_learning_rate = lr;
154  m_layer_chain.for_each([&](auto& layer) {
155  layer.set_learning_rate(lr);
156  });
157  }
158 
160  double get_learning_rate() const {
161  return m_learning_rate;
162  }
163 
167  void set_batch_size(int batch_sz) {
168  m_batch_size = batch_sz;
169  m_layer_chain.for_each([&](auto& layer) {
170  layer.set_batch_size(batch_sz);
171  });
172  }
173 
180  void copy_training_data_to_single_predict(int batch_index) {
181  BC_ASSERT(batch_index<batch_size(), "Require: batch_index < batch_size");
182 
183  m_layer_chain.for_each([&](auto& layer) {
184  layer.zero_time_index();
185  layer.copy_training_data_to_single_predict(batch_index);
186  });
187  }
188 
196  m_layer_chain.for_each([&](auto& layer) {
197  layer.zero_time_index();
198  });
199  }
200 
202  void update_weights() {
203  m_layer_chain.for_each([ ](auto& layer) {layer.update_weights();});
204  }
205 
208  return m_layer_chain.head().layer().input_size();
209  }
210 
211 
214  return m_layer_chain.tail().layer().output_size();
215  }
216 
219  return m_layer_chain.head().layer().batch_size();
220  }
221 
225  std::string get_string_architecture() const {
226  std::string architecture = "";
227  m_layer_chain.for_each([&](auto& layer) {
228  architecture += layer.get_string_architecture() + "\n";
229  });
230  return architecture;
231  }
232 
238  void save(std::string directory_name) {
239  zero_time_index();
240  //Attempt to create a directory to save our model in
241  if (directory_name == ".")
242  directory_name = "";
243 
244  if (directory_name != "" &&
245  !bc::filesystem::directory_exists(directory_name))
246  {
247  bc::filesystem::mkdir(directory_name);
248  }
249 
250  auto get_filepath = [&](std::string filename) {
251  return bc::filesystem::make_path(directory_name, filename);
252  };
253 
254  {
255  //Create a yaml file with network description/architecture
256  std::ofstream os(get_filepath("architecture.yaml"));
257  os << get_string_architecture();
258  }
259 
260  {
261  //Store meta-data about the current state
262  std::ofstream os(get_filepath("meta"));
263  os << this->get_learning_rate() << '\n';
264  os << this->batch_size() << '\n';
265  }
266 
267  //Initialize a layer loader object to load each layer
268  Layer_Loader loader(directory_name);
269 
270  int index = 0;
271  m_layer_chain.for_each([&](auto& layer) {
272  loader.set_current_layer_index(index);
273  loader.set_current_layer_name(layer.classname());
274  loader.make_current_directory();
275  layer.save(loader);
276  layer.save_from_cache(loader, layer.get_cache());
277  index++;
278  });
279  }
280 
284  void load(std::string directory_name) {
285  zero_time_index();
286 
287  auto get_filepath = [&](std::string filename) {
288  return bc::filesystem::make_path(directory_name, filename);
289  };
290 
291  Layer_Loader loader(directory_name);
292  int index = 0;
293 
294  m_layer_chain.for_each([&](auto& layer) {
295  loader.set_current_layer_index(index);
296  loader.set_current_layer_name(layer.classname());
297  layer.load(loader);
298  layer.load_to_cache(loader, layer.get_cache());
299  index++;
300  });
301 
302  std::ifstream is(get_filepath("meta"));
303  std::string tmp;
304 
305  std::getline(is, tmp);
306  set_learning_rate(std::stod(tmp));
307  std::getline(is, tmp);
308  set_batch_size(std::stoi(tmp));
309  }
310 };
311 
312 
318 template<class ... Layers>
319 auto neuralnetwork(Layers ... layers) {
320  return NeuralNetwork<Layers...>(layers...);
321 }
322 
323 }
324 }
325 
326 #endif /* NEURALNETWORK_H_ */
auto & get_layer()
Returns a reference to the layer specified by the given index.
Definition: network.h:143
int mkdir(const std::string &name)
Definition: filesystem.h:31
Definition: constexpr_int.h:14
std::string get_string_architecture() const
Returns a yaml representation of the neural network.
Definition: network.h:225
auto single_predict(const T &tensor)
Returns the output of a single input.
Definition: network.h:128
Definition: layer_loader.h:19
bc::string make_path(const bc::string &path)
Definition: filesystem.h:40
bool directory_exists(const std::string &name)
Definition: filesystem.h:21
auto forward_propagation(const T &tensor)
Calls forward propagation on each of the neural_network&#39;s layers The time index will be set to zero p...
Definition: network.h:75
void update_weights()
Updates the weights of each Layer based upon the current stored gradients.
Definition: network.h:202
void set_current_layer_index(int layer_index)
Definition: layer_loader.h:32
void zero_time_index()
Sets the expression_template time_index to zero.
Definition: network.h:195
bc::traits::conditional_detected_t< detail::query_forward_requires_outputs, T, std::false_type > is_recurrent_layer
Definition: network.h:24
Definition: type_traits.h:130
int size_t
Definition: common.h:283
bc::size_t batch_size() const
returns the batch_size of the neural network.
Definition: network.h:218
void set_batch_size(int batch_sz)
Sets the batch_size of the entire Neural_Network The intermediate values are discarded when setting t...
Definition: network.h:167
bc::size_t output_size() const
returns the output_size of the last layer
Definition: network.h:213
void copy_training_data_to_single_predict(int batch_index)
Copies the given batch_index from the training cell_state to the inference cell_state.
Definition: network.h:180
auto neuralnetwork(Layers ... layers)
Factory method for creating neural_networks.
Definition: network.h:319
double get_learning_rate() const
Returns the current global learning rate.
Definition: network.h:160
typename conditional_detected< func, TestType, DefaultType >::type conditional_detected_t
Definition: type_traits.h:87
typename T::forward_requires_outputs query_forward_requires_outputs
Definition: layer_traits.h:16
void make_current_directory()
Definition: layer_loader.h:78
NeuralNetwork(Layers... layers)
Basic Constructor for Neural Networks.
Definition: network.h:50
layer_chain m_layer_chain
Definition: network.h:43
bc::size_t input_size() const
returns the input_size of the first layer
Definition: network.h:207
#define BC_ASSERT(condition, message)
Definition: common.h:185
void set_learning_rate(double lr)
Sets the learning for each layer in the Neural_Network.
Definition: network.h:152
void load(std::string directory_name)
Loads a neural network from a previously saved instance.
Definition: network.h:284
auto back_propagation(const T &tensor)
Calls back-propagation on each of the neural_network&#39;s layers The time index will be incremented afte...
Definition: network.h:90
auto & get_layer() const
Returns a const reference to the layer specified by the given index.
Definition: network.h:138
void set_current_layer_name(string current_layername)
Definition: layer_loader.h:28
auto predict(const T &tensor)
Returns the output of a single batch.
Definition: network.h:113
the Neural_Network
Definition: network.h:34
void save(std::string directory_name)
Creates the directory directory_name using mkdir.
Definition: network.h:238
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22