BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
stochastic_gradient_descent.h
Go to the documentation of this file.
1 /*
2  * Stochastic_Gradient_Descent.h
3  *
4  * Created on: Dec 11, 2019
5  * Author: joseph
6  */
7 
8 #ifndef BLACKCAT_TENSORS_NEURALNETWORKS_OPTIMIZERS_SGD_H_
9 #define BLACKCAT_TENSORS_NEURALNETWORKS_OPTIMIZERS_SGD_H_
10 
11 #include "optimizer_base.h"
12 
13 namespace bc {
14 namespace nn {
15 
17 
18  template<class ValueType>
20 
22  bc::traits::query_value_type, ValueType, ValueType>;
23 
25 
26  template<class... Args>
27  Optimizer(Args&&...) {}
28 
29  template<class TensorX, class Gradients>
30  void update(TensorX& tensor, Gradients&& delta) {
31  tensor += learning_rate * delta;
32  }
33 
35  learning_rate = lr;
36  }
37  };
38 
39 } sgd;
40 
41 }
42 }
43 
44 #endif
struct bc::nn::Stochastic_Gradient_Descent sgd
void set_learning_rate(value_type lr)
Definition: stochastic_gradient_descent.h:34
bc::traits::conditional_detected_t< bc::traits::query_value_type, ValueType, ValueType > value_type
Definition: stochastic_gradient_descent.h:22
Definition: optimizer_base.h:16
typename T::value_type query_value_type
Definition: type_traits.h:173
Optimizer(Args &&...)
Definition: stochastic_gradient_descent.h:27
typename conditional_detected< func, TestType, DefaultType >::type conditional_detected_t
Definition: type_traits.h:87
value_type learning_rate
Definition: stochastic_gradient_descent.h:24
Definition: stochastic_gradient_descent.h:19
void update(TensorX &tensor, Gradients &&delta)
Definition: stochastic_gradient_descent.h:30
Definition: stochastic_gradient_descent.h:16
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22