8 #ifndef BLACKCAT_TENSORS_NEURALNETWORKS_OPTIMIZERS_SGD_H_ 9 #define BLACKCAT_TENSORS_NEURALNETWORKS_OPTIMIZERS_SGD_H_ 18 template<
class ValueType>
26 template<
class... Args>
29 template<
class TensorX,
class Gradients>
30 void update(TensorX& tensor, Gradients&& delta) {
31 tensor += learning_rate * delta;
struct bc::nn::Stochastic_Gradient_Descent sgd
void set_learning_rate(value_type lr)
Definition: stochastic_gradient_descent.h:34
bc::traits::conditional_detected_t< bc::traits::query_value_type, ValueType, ValueType > value_type
Definition: stochastic_gradient_descent.h:22
Definition: optimizer_base.h:16
typename T::value_type query_value_type
Definition: type_traits.h:173
Optimizer(Args &&...)
Definition: stochastic_gradient_descent.h:27
typename conditional_detected< func, TestType, DefaultType >::type conditional_detected_t
Definition: type_traits.h:87
value_type learning_rate
Definition: stochastic_gradient_descent.h:24
Definition: stochastic_gradient_descent.h:19
void update(TensorX &tensor, Gradients &&delta)
Definition: stochastic_gradient_descent.h:30
Definition: stochastic_gradient_descent.h:16
The Evaluator determines if an expression needs to be greedily optimized.
Definition: algorithms.h:22