BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
Public Types | Public Member Functions | Public Attributes | List of all members
bc::nn::Stochastic_Gradient_Descent::Optimizer< ValueType > Struct Template Reference

#include <stochastic_gradient_descent.h>

Inheritance diagram for bc::nn::Stochastic_Gradient_Descent::Optimizer< ValueType >:
Inheritance graph
[legend]
Collaboration diagram for bc::nn::Stochastic_Gradient_Descent::Optimizer< ValueType >:
Collaboration graph
[legend]

Public Types

using value_type = bc::traits::conditional_detected_t< bc::traits::query_value_type, ValueType, ValueType >
 

Public Member Functions

template<class... Args>
 Optimizer (Args &&...)
 
template<class TensorX , class Gradients >
void update (TensorX &tensor, Gradients &&delta)
 
void set_learning_rate (value_type lr)
 
- Public Member Functions inherited from bc::nn::Optimizer_Base
void save (Layer_Loader &loader, std::string name) const
 
void load (Layer_Loader &loader, std::string name)
 

Public Attributes

value_type learning_rate = 0.003
 

Member Typedef Documentation

◆ value_type

Constructor & Destructor Documentation

◆ Optimizer()

template<class ValueType >
template<class... Args>
bc::nn::Stochastic_Gradient_Descent::Optimizer< ValueType >::Optimizer ( Args &&  ...)
inline

Member Function Documentation

◆ set_learning_rate()

template<class ValueType >
void bc::nn::Stochastic_Gradient_Descent::Optimizer< ValueType >::set_learning_rate ( value_type  lr)
inline

◆ update()

template<class ValueType >
template<class TensorX , class Gradients >
void bc::nn::Stochastic_Gradient_Descent::Optimizer< ValueType >::update ( TensorX &  tensor,
Gradients &&  delta 
)
inline

Member Data Documentation

◆ learning_rate

template<class ValueType >
value_type bc::nn::Stochastic_Gradient_Descent::Optimizer< ValueType >::learning_rate = 0.003

The documentation for this struct was generated from the following file: