BlackCat_Tensors
A GPU-supported autograd and linear algebra library, designed for neural network construction
|
#include <adam.h>
Public Types | |
using | value_type = typename Tensor::value_type |
using | system_tag = typename Tensor::system_tag |
Public Member Functions | |
template<class... Args> | |
Optimizer (Args &&... args) | |
template<class TensorX , class Gradients > | |
void | update (TensorX &tensor, Gradients &&delta) |
void | set_learning_rate (value_type lr) |
void | save (Layer_Loader &loader, std::string name) const |
void | load (Layer_Loader &loader, std::string name) |
![]() | |
void | save (Layer_Loader &loader, std::string name) const |
void | load (Layer_Loader &loader, std::string name) |
Public Attributes | |
value_type | alpha = bc::nn::default_learning_rate |
value_type | beta_1 = 0.9 |
value_type | beta_2 = 0.999 |
value_type | epsilon = 1e-8 |
value_type | time_stamp = 0 |
Tensor | m_t |
Tensor | v_t |
using bc::nn::Adam::Optimizer< Tensor >::system_tag = typename Tensor::system_tag |
using bc::nn::Adam::Optimizer< Tensor >::value_type = typename Tensor::value_type |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
value_type bc::nn::Adam::Optimizer< Tensor >::alpha = bc::nn::default_learning_rate |
value_type bc::nn::Adam::Optimizer< Tensor >::beta_1 = 0.9 |
value_type bc::nn::Adam::Optimizer< Tensor >::beta_2 = 0.999 |
value_type bc::nn::Adam::Optimizer< Tensor >::epsilon = 1e-8 |
Tensor bc::nn::Adam::Optimizer< Tensor >::m_t |
value_type bc::nn::Adam::Optimizer< Tensor >::time_stamp = 0 |
Tensor bc::nn::Adam::Optimizer< Tensor >::v_t |